Download Free Ideas And Methods In Quantum And Statistical Physics Volume 2 Book in PDF and EPUB Free Download. You can read online Ideas And Methods In Quantum And Statistical Physics Volume 2 and write the review.

A collection of essays by many of the closest co-workers of Raphael Høegh-Krohn.
Articles are presented, covering a wide range of topics in the mathematical methods of quantum physics. These include infinite dimensional analysis based on white noise, operator algebra methods, Feynman path integrals, quantum mechanics on non-simply connected spaces, recent results in supersymmetric theories, stochastic and quantum dynamics, Yang-Baxter systems, statistical physics, thermo field dynamics, and quantum field theory. The essays are based on lectures contributed for the Second Jagna International Workshop held in honour of Prof. Hiroshi Ezawa, a distinguished physicist, educator, and former president of the Physical Society of Japan.
This second volume of Howard Carmichael’s work continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in Volume 1. Written on a level suitable for debut researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with open quantum systems.
This is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.
This book explains the subtleties of quantum statistical mechanics in lower dimensions and their possible ramifications in quantum theory. The discussion is at a pedagogical level and is addressed to both graduate students and advanced researchers with a reasonable background in quantum and statistical mechanics.Topics in the first part of the book include the flux tube model of anyons, the braid group and a detailed discussion about the various aspects of quantum and statistical mechanics of a noninteracting anyon gas.The second part of the book includes a detailed discussion about fractional statistics from the point of view of Chern-Simons theories. Topics covered here include Chern-Simons field theories, charged vortices, anyon superconductivity and the fractional quantum Hall effect.Since the publication of the first edition of the book, an exciting possibility has emerged, that of quantum computing using anyons. A section has therefore been included on this topic in the second edition. In addition, new sections have been added about scattering of anyons with hard disk repulsion as well as fractional exclusion statistics and negative probabilities.
The first volume (General Theory) differs from most textbooks as it emphasizes the mathematical structure and mathematical rigor, while being adapted to the teaching the first semester of an advanced course in Quantum Mechanics (the content of the book are the lectures of courses actually delivered.). It differs also from the very few texts in Quantum Mechanics that give emphasis to the mathematical aspects because this book, being written as Lecture Notes, has the structure of lectures delivered in a course, namely introduction of the problem, outline of the relevant points, mathematical tools needed, theorems, proofs. This makes this book particularly useful for self-study and for instructors in the preparation of a second course in Quantum Mechanics (after a first basic course). With some minor additions it can be used also as a basis of a first course in Quantum Mechanics for students in mathematics curricula. The second part (Selected Topics) are lecture notes of a more advanced course aimed at giving the basic notions necessary to do research in several areas of mathematical physics connected with quantum mechanics, from solid state to singular interactions, many body theory, semi-classical analysis, quantum statistical mechanics. The structure of this book is suitable for a second-semester course, in which the lectures are meant to provide, in addition to theorems and proofs, an overview of a more specific subject and hints to the direction of research. In this respect and for the width of subjects this second volume differs from other monographs on Quantum Mechanics. The second volume can be useful for students who want to have a basic preparation for doing research and for instructors who may want to use it as a basis for the presentation of selected topics.
This second volume of Howard Carmichael’s work continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in Volume 1. Written on a level suitable for debut researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with open quantum systems.
This popular, often cited text returns in a softcover edition to provide a thorough introduction to statistical physics and thermodynamics, and to exhibit the universality of the chain of ideas leading from the laws of microphysics to the macroscopic behaviour of matter. A wide range of applications illustrates the concepts, and many exercises reinforce understanding. Volume I discusses the probabilistic description of quantum or classical systems, the Boltzmann-Gibbs distributions, the conservation laws, and the interpretation of entropy as missing information. Thermodynamics and electromagnetism in matter are dealt with, as well as applications to dilute and condensed gases, and to phase transitions.