Download Free Hydroxymethylfurfural Production Process Cost Analysis Hmf E11a Book in PDF and EPUB Free Download. You can read online Hydroxymethylfurfural Production Process Cost Analysis Hmf E11a and write the review.

This report presents a cost analysis of an early stage process for Hydroxymethylfurfural (HMF) production from glucose syrup. The process examined is similar to the one proposed by the University of Wisconsin-Madison. In this process, glucose is isomerized to fructose, which is then converted to Hydroxymethylfurfural (HMF). This report was developed based essentially on the following reference(s): US Patent 20080033188, issued to Wisconsin Alumni Research Institute in 2008 Keywords: Glucose Isomerization, Dehydration, Biphasic Reactor
This report presents a cost analysis of Methyl Chloride production from methanol and hydrogen chloride. The process examined is a typical catalytic vapor phase process. In this process, methanol and anhydrous HCl are combined in vapor phase and passed through a catalyst bed. Reactor vapor outlet is quenched, dried by sulfuric acid scrubbing and then purified to generate high-purity Methyl Chloride. This report was developed based essentially on the following reference(s): (1) "Chloromethanes", Ullmann's Encyclopedia of Industrial Chemistry, 2012; (2) Handbook of Industrial Chemistry and Biotechnology, 2012 Keywords: Chloromethane, R-40, HCC-40, chlorosilanes production
This report presents a cost analysis of an early stage process for Dimethylfuran (DMF) production from glucose syrup. The process examined is similar to the one proposed by the University of Wisconsin-Madison. In this process, glucose is isomerized to fructose, which is dehydrated forming hydroxymethylfurfural (HMF) intermediate. Then, HMF is converted to DMF. This report was developed based essentially on the following reference(s): Keywords: Glucose Isomerization, Dehydration, Biphasic Reactor
This book reviews the recent advances in hydrothermal conversion of biomass into chemicals and fuels, and consists of 15 chapters. It introduces the properties of high-temperature water, the merits of hydrothermal conversion of biomass, and some novel hydrothermal conversion processes, mainly including hydrothermal production of value-added products, hydrothermal gasification, hydrothermal liquefaction and hydrothermal carbonization. This book introduces a new concept for counteracting the imbalance in the carbon cycle, which is caused by the rapid consumption of fossil fuels in anthropogenic activities in combination with the slow formation of fossil fuels. Accordingly, the book is useful in conveying a fundamental understanding of hydrothermal conversion of biomass in the carbon cycle so that a contribution can be made to achieving sustainable energy and environment. It is also interesting to a wide readership in various fields including chemical, geologic and environmental science and engineering. Fangming Jin is a Distinguished Professor at the School of Environmental Science & Engineering, Shanghai Jiao Tong University, China
A useful guide to the fundamentals and applications of deep eutectic solvents Deep Eutectic Solvents contains a comprehensive review of the use of deep eutectic solvents (DESs) as an environmentally benign alternative reaction media for chemical transformations and processes. The contributors cover a range of topics including synthesis, structure, properties, toxicity and biodegradability of DESs. The book also explores myriad applications in various disciplines, such as organic synthesis and (bio)catalysis, electrochemistry, extraction, analytical chemistry, polymerizations, (nano)materials preparation, biomass processing, and gas adsorption. The book is aimed at organic chemists, catalytic chemists, pharmaceutical chemists, biochemists, electrochemists, and others involved in the design of eco-friendly reactions and processes. This important book: -Explores the promise of DESs as an environmentally benign alternative to hazardous organic solvents -Covers the synthesis, structure, properties (incl. toxicity) as well as a wide range of applications -Offers a springboard for stimulating critical discussion and encouraging further advances in the field Deep Eutectic Solvents is an interdisciplinary resource for researchers in academia and industry interested in the many uses of DESs as an environmentally benign alternative reaction media.
This reference book describes how bioprocessing and biotechnology could enhance the value extracted from wood-based lignocellulosic fiber by employing both biochemical and thermochemical conversion processes. It documents recent accomplishments and suggests future prospects for research and development of integrated forest biorefineries (IFBR) as the path forward for the pulp, paper and other fiber-processing industries. This is the only book to cover this area of high economic, social, and environmental importance. It is aimed at industrialists and academics from diverse science and engineering backgrounds including chemical and biotechnology companies, governmental and professional bodies, and scholarly societies. The Editor and contributors are internationally recognized scientists and many are leaders in their respective fields. The book starts with an introductory overview of the current state of biorefining and a justification for future developments. The next four chapters deal with social, economic and environmental issues related to regulations, biomass production and supply, process modelling, and life cycle analysis. Subsequent chapters focus on the extraction of biochemicals from biomass and their potential utilization to add value to the IFBR prior to pulping. The book then presents, compares and evaluates two types of forest biorefineries based on kraft and organosolv pulping. Finally, the book assess the potential of waste biomass and streams, such paper mill sludge and black liquor, to serve as feedstock for biofuel production and value-added biomaterials through both the biochemical and thermochemical routes of biomass bioprocessing. The economics of the described IFBR processes and products, and their environmental impact, is a major focus in most of the chapters. Practical examples are presented where relevant and applicable.
Commercially, D-xylitol is produced by chemical reactions that are tailored to the requirements of various sectors. However, due to the rising interest in sustainable development and ecologically benign practices, microbial transformation processes are generally preferred over the conventional chemical conversion process. The former have multiple advantages, including less chemical load on the environment, higher efficiency, and the ability to dilute multiple downstream transformation attempts while maintaining product yield and recovery. This book aims to disseminate the most current advances in the biotechnological production of D-xylitol and its applications in medical and health care. It is a unique collection of 15 book chapters split into 5 sections and written by experts in their respective fields, who present critical insights into several topics, review current research, and discuss future progress in this area. This book also provides essential information on hemicellulose hydrolysis to recover D-xylose, detoxification of hemicellulose hydrolysates, and improved fermentation methods for increased D-xylitol production. The highlights of strain improvement to increase the D-xylitol titers and downstream recovery of D-xylitol are also discussed in several sections. The current applications of D-xylitol in medical and health care have been used to justify the cost incurred for setting up the demonstration plant for D-xylitol production in the market. Apart from researchers and post-graduate students in the field of microbial biotechnology, this book will assist those in the business community who deal with the economic analysis of bio-based products and their marketing.
Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex
Marine Bioenergy: Trends and Developments features the latest findings of leading scientists from around the world. Addressing the key aspects of marine bioenergy, this state-of-the-art text:Offers an introduction to marine bioenergyExplores marine algae as a source of bioenergyDescribes biotechnological techniques for biofuel productionExplains th
This book offers a perspective on transforming the technologies, infrastructures, and knowledge that are part of forest products manufacturing processes to help establish a forest biorefinery industry for sustainable production of energy, chemicals, and products.