Download Free Hydrologic Frequency Modeling Book in PDF and EPUB Free Download. You can read online Hydrologic Frequency Modeling and write the review.

Floods constitute a persistent and serious problem throughout the United States and many other parts of the world. They are respon sible for losses amounting to billions of dollars and scores of deaths annually. Virtually all parts of the nation--coastal, mountainous and rural--are affected by them. Two aspects of the problem of flooding that have long been topics of scientific inquiry are flood frequency and risk analyses. Many new, even improved, techniques have recently been developed for performing these analyses. Nevertheless, actual experience points out that the frequency of say a 100-year flood, in lieu of being encountered on the average once in one hundred years, may be as little as once in 25 years. It is therefore appropriate to pause and ask where we are, where we are going and where we ought to be going with regard to the technology of flood frequency and risk analyses. One way to address these questions is to provide a forum where people from all quarters of the world can assemble, discuss and share their experience and expertise pertaining to flood frequency and risk analyses. This is what constituted the motivation for organizing the International Symposium on Flood Frequency and Risk Analyses held May 14-17, 1986, at Louisiana State University, Bat-on Rouge, Louisiana.
After five decades, the field of Statistical Hydrology continues to evolve and remains a very active area of investigation. Researchers continue to examine various distributions, methods of estimation of parameters, and problems related to regionalization. However, much of this research appears in journals and reports and usually in a form not easily accessible to practitioners and students. Flood Frequency Analysis answers this need by presenting the most popular and promising distributions and estimation procedures in a unified format. It offers the details that provide the basis for the computations, and illustrates each procedure with real data.
The unusual frequency of hydro-meteorological events in recent decades, often with catastrophic consequences for society and the environment, require new methods for designing water management projects and the structures meant to protect us from natural hazards. These methods and techniques are often based on the statistical modeling techniques of frequency analysis. Predictive Hydrology: A Frequency Analysis Approach is the first book to address both the theoretical concepts and the methodological approaches used in frequency hydrology—spelling out the fundamental methods to consider, providing concise instruction on the techniques that are involved, and including examples and critiques based on practical applications. It explores some of the recent research developments in the field. Published originally in French, this English translation targets students in civil engineering, environmental sciences and technology, hydrology, geography, geology and ecology. This book will also serve as a useful reference not only for teachers and researchers, but for engineering practitioners, who are constantly faced with the problems of handling data, but often find themselves without the appropriate analytical tools.
This book contains seven parts. The first part deals with some aspects of rainfall analysis, including rainfall probability distribution, local rainfall interception, and analysis for reservoir release. Part 2 is on evapotranspiration and discusses development of neural network models, errors, and sensitivity. Part 3 focuses on various aspects of urban runoff, including hydrologic impacts, storm water management, and drainage systems. Part 4 deals with soil erosion and sediment, covering mineralogical composition, geostatistical analysis, land use impacts, and land use mapping. Part 5 treats remote sensing and geographic information system (GIS) applications to different hydrologic problems. Watershed runoff and floods are discussed in Part 6, encompassing hydraulic, experimental, and theoretical aspects. Water modeling constitutes the concluding Part 7. Soil and Water Assessment Tool (SWAT), Xinanjiang, and Soil Conservation Service-Curve Number (SCS-CN) models are discussed. The book is of interest to researchers and practitioners in the field of water resources, hydrology, environmental resources, agricultural engineering, watershed management, earth sciences, as well as those engaged in natural resources planning and management. Graduate students and those wishing to conduct further research in water and environment and their development and management find the book to be of value.
This book provides a compilation of statistical analysis methods used to analyze and assess critical variables in the hydrological cycle.
Each year, floods cause an enormous amount of global economic and social damage, impacting transportation systems, water supplies, agriculture, and health. Response management to catastrophic floods require increased measures involving integrated planning, adaptation, and recovery strategies in order to protect against human loss. Decision Support Methods for Assessing Flood Risk and Vulnerability is a pivotal reference source that provides vital research on the application of effective models and tools focused on the diagnosis of vulnerability to flooding risks and evaluates and measures the impact of floods on socio-economic wellbeing. While highlighting topics such as hydrological events, soil erosion, and flood vulnerability, this publication explores methods of identifying appropriate adaptation strategies. This book is ideally designed for researchers, students, academicians, policymakers, government officials, and technology developers seeking current empirical research findings to be used to improve the overall understanding of the flood phenomenon.
This book comprehensively accounts the advances in data-based approaches for hydrologic modeling and forecasting. Eight major and most popular approaches are selected, with a chapter for each — stochastic methods, parameter estimation techniques, scaling and fractal methods, remote sensing, artificial neural networks, evolutionary computing, wavelets, and nonlinear dynamics and chaos methods. These approaches are chosen to address a wide range of hydrologic system characteristics, processes, and the associated problems. Each of these eight approaches includes a comprehensive review of the fundamental concepts, their applications in hydrology, and a discussion on potential future directions.
Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation
"Hydrologic modelling of floods enables more accurate assessment of climate change impacts on flood magnitudes and frequencies. This book synthesises various modelling methodologies available to aid planning and operational decision making, with emphasis on methodologies applicable in data scarce regions, such as developing countries. Topics covered include: physical processes which transform precipitation into flood runoff, flood routing, assessment of likely changes in flood frequencies and magnitudes under climate change scenarios, and use of remote sensing, GIS and DEM technologies in modelling of floods to aid decision making. Problems included in each chapter, and supported by links to available online data sets and modelling tools accessible at www.cambridge.org/mujumdar, engage the reader with practical applications of the models"--