Download Free Hydrologic And Water Quality Models For Agriculture And Forestry Book in PDF and EPUB Free Download. You can read online Hydrologic And Water Quality Models For Agriculture And Forestry and write the review.

A discussion of the role of modeling in the management process, with an overview of state-of-the-art modeling applications. The first chapters provide a background on the benefits and costs of modeling and on the ecological basis of models, using historical applications as examples, while the second section describes the latest models from a wide selection of environmental disciplines. Since management frequently requires the integration of knowledge from many different areas, both single discipline and multidiscipline models are discussed in detail, and the author emphasizes the importance of understanding the issues and alternatives in choosing, applying, and evaluating models. Land and watershed managers as well as students of forestry, park management, regional planing and agriculture will find this a thorough and practical introduction to all aspects of modeling.
If you work in the water quality management field, you know the challenges of monitoring and controlling pollutants in our water supply. The increasing problem of agricultural nonpoint source pollution requires complex solutions. Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology covers the latest techniques and methods of managing large watershed areas, with an emphasis on controlling non-point source pollution, especially from agricultural run-off. Written by leading experts, the book includes topics such as: nitrate and phosphorus pollution, pesticide contamination, erosion and sedimentation, water-table management, and watershed management. The authors discuss the effects of agricultural run-off - one of the most intransigent problems now faced by environmental engineers and hydrologists. They explore each issue with an eye towards the integrated management of water quality and water resources over a defined area or region. This single-source reference gives you a complete understanding of the whats, whys, and hows of nonpoint source pollution - and more importantly of how to monitor and manage it. Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology provides a broad but detailed overview that helps you to comprehend the intricacies of the problem and puts you on the path to finding the answers.
Of all the outputs of forests, water may be the most important. Streamflow from forests provides two-thirds of the nation's clean water supply. Removing forest cover accelerates the rate that precipitation becomes streamflow; therefore, in some areas, cutting trees causes a temporary increase in the volume of water flowing downstream. This effect has spurred political pressure to cut trees to increase water supply, especially in western states where population is rising. However, cutting trees for water gains is not sustainable: increases in flow rate and volume are typically short-lived, and the practice can ultimately degrade water quality and increase vulnerability to flooding. Forest hydrology, the study of how water flows through forests, can help illuminate the connections between forests and water, but it must advance if it is to deal with today's complexities, including climate change, wildfires, and changing patterns of development and ownership. This book identifies actions that scientists, forest and water managers, and citizens can take to help sustain water resources from forests.
Forests cover approximately 26% of the world's land surface area and represent a distinct biotic community. They interact with water and soil in a variety of ways, providing canopy surfaces which trap precipitation and allow evaporation back into the atmosphere, thus regulating how much water reaches the forest floor as through fall, as well as pull water from the soil for transpiration. The discipline "forest hydrology" has been developed throughout the 20th century. During that time human intervention in natural landscapes has increased, and land use and management practices have intensified. The book will be useful for graduate students, professionals, land managers, practitioners, and researchers with a good understanding of the basic principles of hydrology and hydrologic processes.
The previously developed watershed hydrological and water quality model for St. Louis Bay watershed by Kieffer (2002) was refined and calibrated. The aspects of model development refinement included development of fertilization-related nutrient input parameters, evaluation of nutrient input methods, development of plant uptake-related nutrient input parameters, non-cropland simulation using PQUAL module, and recalibration of hydrology in Jourdan River. The related information of typical cropland management practice based on consultation from Mississippi State University Extention Service personnel was integrated into the watershed model. In addition, the Mississippi Department of Environmental Quality (MDEQ) observed water quality data were analyzed to evaluate the appropriateness of current watershed delineation and assess the health of the stream based on the MDEQ proposed numerical water quality target. The refined watershed model was calibrated in Wolf Rover and Jourdan River using both USGS and MDEQ observed water quality data. The concentrations of water quality constituents calculated from the developed watershed model will be provided as boundary conditions for the developed Bay hydrodynamic and water quality model for Total Maximum Daily Load studies.
Floods continue to cause significant damage in the United States and elsewhere, and questions about the causes of flooding continue to be debated. A significant amount of research has been conducted on the relationship between forest management activities and water yield, peak flows, and flooding; somewhat less research has been conducted on the modeling of these activities as related to flooding. This bibliography and online bibliographic database provide a searchable listing of more than 600 publications related to the interrelationships of forest and forest management on watershed and flood hydrology. Also included are publications related to the capability and limitations of currently available hydrologic models and modeling approaches, with particular emphasis on their utility for evaluating forest management effects.
The previously developed watershed hydrological and water quality model for St. Louis Bay watershed by Kieffer (2002) was refined and calibrated. The aspects of model development refinement included development of fertilization-related nutrient input parameters, evaluation of nutrient input methods, development of plant uptake-related nutrient input parameters, non-cropland simulation using PQUAL module, and recalibration of hydrology in Jourdan River. The related information of typical cropland management practice based on consultation from Mississippi State University Extention Service personnel was integrated into the watershed model. In addition, the Mississippi Department of Environmental Quality (MDEQ) observed water quality data were analyzed to evaluate the appropriateness of current watershed delineation and assess the health of the stream based on the MDEQ proposed numerical water quality target. The refined watershed model was calibrated in Wolf Rover and Jourdan River using both USGS and MDEQ observed water quality data. The concentrations of water quality constituents calculated from the developed watershed model will be provided as boundary conditions for the developed Bay hydrodynamic and water quality model for Total Maximum Daily Load studies.
Due to its height, density, and thickness of crown canopy; fluffy forest floor; large root system; and horizontal distribution; forest is the most distinguished type of vegetation on the earth. In the U.S., forests occupy about 30 percent of the total territory. Yet this 30 percent of land area produces about 60 percent of total surface runoff, the major water resource area of the country. Any human activity in forested areas will inevitably disturb forest floors and destroy forest canopies, consequently affecting the quantity, quality, and timing of water resources. Thoroughly updated and expanded, Forest Hydrology: An Introduction to Water and Forests, Third Edition discusses the concepts, principles, and processes of forest and forest activity impacts on the occurrence, distribution, and circulation of water and the aquatic environment. Brings water resources and forest-water relations into a single, comprehensive textbook Focuses on the concepts, processes, and general principles in forest hydrology Covers functions, properties, and science of water; water distribution; forests and precipitation, vaporization, stream flow, and stream sediment Discusses watershed management planning and practical applications of forest hydrology in resource management In a single textbook, Forest Hydrology: An Introduction to Water and Forests, Third Edition comprehensively covers water and water resources issues, forest characteristics relevant to the environment, forest impacts in the hydrological cycle, watershed research, watershed management planning, and hydrologic measurements. With the addition of new chapters, new issues, and appendices, this new edition is a valuable resource for upper-level undergraduates in forest hydrology courses as well as professionals involved in water resources management and decision-making in forested watersheds.
This publication comes with computer software and presents a comprehensive simulation model designed to predict the hydrologic response, including potential for surface and groundwater contamination, of alternative crop-management systems. It simulates crop development and the movement of water, nutrients and pesticides over and through the root zone for a representative unit area of an agricultural field over multiple years. The model allows simulation of a wide spectrum of management practices and scenarios with special features such as the rapid transport of surface-applied chemicals through macropores to deeper depths and the preferential transport of chemicals within the soil matrix via mobile-immobile zones. The transfer of surface-applied chemicals (pesticides in particular) to runoff water is also an important component.