Download Free Hydrologic Analysis And Design Book in PDF and EPUB Free Download. You can read online Hydrologic Analysis And Design and write the review.

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. McCuen’s Hydrologic Analysis and Design, Fourth Edition is intended for a first course in hydrology. The text introduces the reader to the physical processes of the hydrologic cycle, the computational fundamentals of hydrologic analysis, and the elements of design hydrology. Although sections of the book introduce engineering design methods for engineering students, the concepts and methods pertain to students in a range of similar disciplines including geology, geography, forestry, and planning. The Fourth Edition streamlines the organization of the chapters to strengthen the focus and scope of each section. McCuen remains vigilant of the various ways hydrology is taught, making flexibility a touchstone of the book’s structure. The marked flexibility in all 13 chapters provides knowledge about new design procedures, methods, and philosophies.
For courses in hydrology. An introduction to hydrology through analysis and design McCuen's Hydrologic Analysis and Design, Fourth Edition is intended for a first course in hydrology. The text introduces students to the physical processes of the hydrologic cycle, the computational fundamentals of hydrologic analysis, and the elements of design hydrology. Although sections of the book introduce engineering design methods for engineering students, the concepts and methods pertain to students in a range of similar disciplines including geology, geography, forestry, and planning. The Fourth Edition streamlines the organization of the chapters to strengthen the focus and scope of each section. McCuen remains vigilant of the various ways hydrology is taught, making flexibility a touchstone of the book's structure. The marked flexibility in all 13 chapters provides knowledge about new design procedures, methods, and philosophies.
An attempt is made to place before students (degree and post-degree) and professionals in the fields of Civil and Agricultural Engineering, Geology and Earth Sciences, this important branch of Hydroscience, i.e., Hydrology. It deals with all phases of the Hydrologic cycle and related opics in a lucid style and in metric system. There is a departure from empiricism, with emphasis on collection of hydrological data, processing and analysis of data, and hydrological design on sound principles and matured judgement. Large number of hydrological design problems are worked out at the end of each article, to illustrate the principles involved and the design procedure. Problems for assignment are given at the end of each chapter, along with objective type and intelligence questions.
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
This exciting new textbook introduces the concepts and tools essential for upper-level undergraduate study in water resources and hydraulics. Tailored specifically to fit the length of a typical one-semester course, it will prove a valuable resource to students in civil engineering, water resources engineering, and environmental engineering. It will also serve as a reference textbook for researchers, practicing water engineers, consultants, and managers. The book facilitates students' understanding of both hydrologic analysis and hydraulic design. Example problems are carefully selected and solved clearly in a step-by-step manner, allowing students to follow along and gain mastery of relevant principles and concepts. These examples are comparable in terms of difficulty level and content with the end-of-chapter student exercises, so students will become well equipped to handle relevant problems on their own. Physical phenomena are visualized in engaging photos, annotated equations, graphical illustrations, flowcharts, videos, and tables.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Understand the fundamentals, methods, and processes of modern hydrology This comprehensive engineering textbook offers a thorough overview of all aspects of hydrology and shows how to apply hydrologic principles for effective management of water resources. It presents detailed explanations of scientific principles along with real-world applications and technologies. Engineering Hydrology: An Introduction to Processes, Analysis, and Modeling follows a logical progression that builds on foundational concepts with modern hydrologic methods. Every hydrologic process is clearly explained along with current techniques for modeling and analyzing data. You will get practice problems throughout that help reinforce important concepts. Coverage includes: •The hydrologic cycle •Water balance •Components of the hydrologic cycle •Evapotranspiration •Infiltration and soil moisture •Surface water •Groundwater •Water quality •Hydrologic measurements •Streamflow measurement •Remote sensing and geographic information systems •Hydrologic analysis and modeling •Unit hydrograph models •River flow modeling •Design storm and design flood estimation •Environmental flows •Impact of climate change on water management
Hydrology and water resources analysis can be looked at together, but this is the only book which presents the relevant material and which bridges the gap between scientific processes and applications in one text. New methods and programs for solving hydrological problems are outlined in a concise and readily accessible form. Hydrology and Water Resource Systems Analysis includes a number of illustrations and tables, with fully solved example problems integrated within the text. It describes a systematic treatment of various surface water estimation techniques; and provides detailed treatment of theory and applications of groundwater flow for both steady-state and unsteady-state conditions; time series analysis and hydrological simulation; floodplain management; reservoir and stream flow routing; sedimentation and erosion hydraulics; urban hydrology; the hydrological design of basic hydraulic structures; storage spillways and energy dissipation for flood control, optimization techniques for water management projects; and methods for uncertainty analysis. It is written for advanced undergraduate and graduate students and for practitioners. Hydrologists and water-related professionals will be helped with an unfamiliar term or a new subject area, or be given a formula, the procedure for solving a problem, or guidance on the computer packages which are available, or shown how to obtain values from a table of data. For them it is a compendium of hydrological practice rather than science, but sufficient scientific background is provided to enable them to understand the hydrological processes in a given problem, and to appreciate the limitations of the methods presented for solving it.
The Clean Water Act, with its emphasis on storm water and sediment control in urban areas, has created a compelling need for information in small-catchment hydrology. Design Hydrology and Sedimentology for Small Catchments provides the basic information and techniques required for understanding and implementing design systems to control runoff, erosion, and sedimentation. It will be especially useful to those involved in urban and industrial planning anddevelopment, surface mining activities, storm water management, sediment control, and environmental management. This class-tested text, which presents many solved problems throughout as well as solutions at the end of each chapter, is suitable for undergraduate, graduate, and continuing education courses. In addition, practicing professionals will find it a valuable reference. Anderson/Woessner: APPLIED GROUNDWATER MODELING (1992) Shuirman/Slosson: FORENSIC ENGINEERING (1992) de Marsily: QUANTITATIVE HYDROGEOLOGY (1986) Selley: APPLIED SEDIMENTOLOGY, THIRD EDITION (1988) Huyakorn: COMPUTATIONAL METHODS IN SUBSURFACE FLOW (1986) Pinder: FINITE ELEMENT MODELING IN SURFACE AND SUBSURFACE HYDROLOGY (1977) Key Features * Covers major new improvements and state-of-the-art technologies in sediment control technology * Provides in-depth information on estimating the impact of land-use changes on runoff and flood flows, as well as on estimating erosion and sediment yield from small catchments * Presents superior coverage on design of flood and sediment detention ponds and design of runoff and sediment control measures
This book provides a state-of-the-art overview of the development of concepts and methodology of hydrological sys tems analysis and its wide range of practical applications. Hydrological systems analysis involves the management, processing and interpretation of huge amounts of geoscien tific as well as ecological and historical data of many different types and sources, which can only be handled coherently and efficiently by using interactive geoscientific information systems. Geoscientific information systems as well as flow simulators are integral parts of the methodology. The methodology is clearly explained in the book and ample figures il lustrate the text. The emphasis of the book is on the practical applicability of hydrological systems analysis in integrated water re source management, nature conservation and environmental planning. The compilation of many case-studies, conducted by TNO geohydrologists and others in recent years, included in the book deals with different temporal and spatial scales and various geohydrological settings in The Netherlands, Poland, the European Union as well as in Indonesia. These case studies underpin the strength and elegance of hydrological systems analysis.