Download Free Hydrogeology Of Rocks Of Low Permeability Book in PDF and EPUB Free Download. You can read online Hydrogeology Of Rocks Of Low Permeability and write the review.

This is a discount Black and white version. Some images may be unclear, please see BCCampus website for the digital version.This book was born out of a 2014 meeting of earth science educators representing most of the universities and colleges in British Columbia, and nurtured by a widely shared frustration that many students are not thriving in courses because textbooks have become too expensive for them to buy. But the real inspiration comes from a fascination for the spectacular geology of western Canada and the many decades that the author spent exploring this region along with colleagues, students, family, and friends. My goal has been to provide an accessible and comprehensive guide to the important topics of geology, richly illustrated with examples from western Canada. Although this text is intended to complement a typical first-year course in physical geology, its contents could be applied to numerous other related courses.
This book is a collection of papers presented in the symposia, held in Beijing, on hydrogeology. The papers deal with different topics providing information on some problems on riverside groundwater, assessment of groundwater contamination, and groundwater protection strategy.
Hydrology is a topical and growing subject, as the earth's water resources become scarcer and more vulnerable. Although more than half the surface area of continents is covered with hard fractured rocks, there has until now been no single book available dealing specifically with fractured rock hydrogeology. This book deals comprehensively with the fundamental principles for understanding these rocks, as well as with exploration techniques and assessment. It also provides in-depth discussion of structural mapping, remote sensing, geophysical exploration, GIS, field hydraulic testing, groundwater quality and contamination, geothermal reservoirs, and resources assessment and management. Hydrogeological aspects of various lithology groups, including crystalline rocks, volcanic rocks, carbonate rocks and clastic formations, are dealt with separately, using and discussing examples from all over the world. Applied Hydrogeology of Fractured Rocks will be an invaluable reference source for postgraduate students, researchers, exploration scientists, and engineers engaged in the field of groundwater development in fractured rock areas.
This book contains the results and findings of the advanced research carried out in a pilot area with a thorough investigation of the structure and functioning of an aquifer in a granitic formation. It characterizes the hard rock aquifer system and examines its properties and behavior as well as systematically details the geophysical, geological and remote sensing applications to conceptualize such an aquifer system.
Current manuals and technical books on ground water hydrology contain relatively little specific information on ground water in hard rocks areas, that is mainly igneous and metamorphic rocks of the Precambrian shield areas. This work is intented to fill this gap and to inform of the possibilities of finding and developing water resources in hard rocks areas
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
This book explores the application of the open-source software OpenGeoSys (OGS) for hydrological numerical simulations concerning conservative and reactive transport modeling. It provides general information on the hydrological and groundwater flow modeling of a real case study and step-by-step model set-up with OGS, while also highlighting related components such as the OGS Data Explorer. The material is based on unpublished manuals and the results of a collaborative project between China and Germany (SUSTAIN H2O). Though the book is primarily intended for graduate students and applied scientists who deal with hydrological modeling, it also offers a valuable source of information for professional geoscientists wishing to expand their knowledge of the numerical modeling of hydrological processes including nitrate reactive transport modeling. This book is the second in a series that showcases further applications of computational modeling in hydrological science.
Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures. The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration. Although there are thousands of research papers on crustal permeability, this is the first book-length treatment. This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions.