Download Free Hydrogen And Hydrogen Containing Molecules On Metal Surfaces Book in PDF and EPUB Free Download. You can read online Hydrogen And Hydrogen Containing Molecules On Metal Surfaces and write the review.

This book is dedicated to recent advancements in theoretical and computational studies on the interactions of hydrogen and hydrogenated molecules with metal surfaces. These studies are driven by the development of high-performance computers, new experimental findings, and the extensive work of technological applications towards the realization of a sustainable hydrogen economy. Understanding of the elementary processes of physical and chemical reactions on the atomic scale is important in the discovery of new materials with high chemical reactivity and catalytic activity, as well as high stability and durability. From this point of view, the book focuses on the behavior of hydrogen and hydrogenated molecules on flat, stepped, and reconstructed metal surfaces. It also tackles the quantum mechanical properties of hydrogen and related adsorbates; namely, molecular orbital angular momentum (spin) and diffusion along the minimum potential energy landscape on metal surfaces. All of these profoundly influence the outcomes of (1) catalytic reactions that involve hydrogen; (2) hydrogen storage in metals; and (3) hydrogen purification membranes. Lastly, it surveys the current status of the technology, outlook, and challenges for the long-desired sustainable hydrogen economy in relation to the topics covered in the book.
This book provides an overview of the fundamentals of plasmonic field enhancement phenomena and the recent advancements in the field of hydrogen energy technologies that utilize plasmonics for their performance enhancement. Hydrogen energy is currently a representative clean energy without polluting or greenhouse emission in its use. However, industrial production of hydrogen molecules, or other usable hydrogen-containing molecules, is required for the use of hydrogen energy. It is also important to produce hydrogen in clean, renewable manners, to contribute to the solution of the environmental problems, such as atmospheric pollution and global warming, and of the depletion of energy resources. For the widespread use of hydrogen energy, technical developments particularly for hydrogen production and storage are highly sought after. Free electrons in metals, particularly around metal surfaces or interfaces with dielectric materials, exhibit a strong interaction with electromagnetic fields or light in the form of collective oscillation, named surface plasmons. The electromagnetic field intensity around subwavelength-size metal particles can be highly localized due to the coupling between the incident photons and collective oscillation of free electrons at the metal surface, resulting in focusing of electromagnetic energy density, or namely local field enhancement.
Hydrogen is the smallest impurity atom that can be implanted in a metallic host. Its small mass and strong interaction with the host electrons and nuclei are responsible for many anomalous and interesting solid state effects. In addition, hydrogen in metals gives rise to a number of technological problems such as hydrogen embrittlement, hydrogen storage, radiation hardening, first wall problems associated with nuclear fusion reactors, and degradation of the fuel cladding in fission reactors. Both the fundamental effects and applied problems have stimulated a great deal of inter est in the study of metal hydrogen systems in recent years. This is evident from a growing list of publications as well as several international conferences held in this field during the past decade. It is clear that a fundamental understanding of these problems re quires a firm knowledge of the basic interactions between hydrogen, host metal atoms, intrinsic lattice defects and electrons. This understanding is made particularly difficult by hyrogen's small mass and by the large lattice distortions that accompany the hydrogenation process. The purpose of the "International Symposium on the Electronic Structure and Properties of Hydrogen in Metals" held in Richmond, Virginia, March 4-6, 1982 was to increase our fundamental under standing of hydrogen in metals. Such knowledge is essential in solving technologically important questions. The symposium con sisted of twenty-two invited papers and seventy-two contributed poster presentations and attracted nearly 150 participants from thirteen countries. The proceedings of this symposium constitute this book.
How Can We Lower the Power Consumption of Gas Sensors? There is a growing demand for low-power, high-density gas sensor arrays that can overcome problems relative to high power consumption. Low power consumption is a prerequisite for any type of sensor system to operate at optimum efficiency. Focused on fabrication-friendly microelectromechanical systems (MEMS) and other areas of sensor technology, MEMS and Nanotechnology for Gas Sensors explores the distinct advantages of using MEMS in low power consumption, and provides extensive coverage of the MEMS/nanotechnology platform for gas sensor applications. This book outlines the microfabrication technology needed to fabricate a gas sensor on a MEMS platform. It discusses semiconductors, graphene, nanocrystalline ZnO-based microfabricated sensors, and nanostructures for volatile organic compounds. It also includes performance parameters for the state of the art of sensors, and the applications of MEMS and nanotechnology in different areas relevant to the sensor domain. In addition, the book includes: An introduction to MEMS for MEMS materials, and a historical background of MEMS A concept for cleanroom technology The substrate materials used for MEMS Two types of deposition techniques, including chemical vapour deposition (CVD) The properties and types of photoresists, and the photolithographic processes Different micromachining techniques for the gas sensor platform, and bulk and surface micromachining The design issues of a microheater for MEMS-based sensors The synthesis technique of a nanocrystalline metal oxide layer A detailed review about graphene; its different deposition techniques; and its important electronic, electrical, and mechanical properties with its application as a gas sensor Low-cost, low-temperature synthesis techniques An explanation of volatile organic compound (VOC) detection and how relative humidity affects the sensing parameters MEMS and Nanotechnology for Gas Sensors provides a broad overview of current, emerging, and possible future MEMS applications. MEMS technology can be applied in the automotive, consumer, industrial, and biotechnology domains.
Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.
Energy Materials: A Short Introduction to Functional Materials for Energy Conversion and Storage provides readers with an accessible overview of the functional materials currently employed or investigated for energy provision, conversion, and storage. Rather than exploring the physical and chemical basics of energy conversion and storage, this book focuses on the various materials used in this field with simple explanations of their design principles, specific functionality, and quantitative figures of merit. It is suited for advanced undergraduate and graduate students studying energy and energy materials in physics, material science, engineering, and chemistry courses, as well as scientists starting their research in the field of functional materials for energy applications. Key Features: Provides an accessible introduction to complex subjects in simple terms with pedagogical features to enhance learning Contains the latest developments in this exciting and growing area Discusses examples from modern high-impact research and applications