Download Free Hydrocarbon Source Rock Potential Of The Western Otway Basin Book in PDF and EPUB Free Download. You can read online Hydrocarbon Source Rock Potential Of The Western Otway Basin and write the review.

Over the past two decades there has been increased interest in the availability of hydrocarbon charge through a better understanding of petroleum geochemistry and the identification and characterization of petroleum source rocks. These rocks are geochemically unique and form under specific sets of circumstances. This book brings together both geologic and geochemical data from fifteen petroleum source rocks, ranging in age from Devonian to Eocene, that would otherwise be widely dispersed in the literature or available only in proprietary corporate databases. Much of this information, presented in either a tabular or graphic fashion, provides the petroleum explorationist and the geochemist with a framework to establish relationships among various geochemical indices and depositional settings.
This book analyzes hydrocarbon generation and accumulation within space-limited source rocks. The authors draw conclusions based on the principles of basin formation, hydrocarbon generation and accumulation, coupled with the practice of terrigenous basins in eastern China. Hydrocarbon generation and expulsion have been quantitatively assessed in space-limited source rock systems. This book explores new hydrocarbon generation and expulsion models to reflect real geological situations more accurately. The theory and practice proposed in this book challenge the traditional theory of kerogen thermal degradation and hydrocarbon generation.
This chapter is proposed to give the principal learning on the application of the formation of petroleum source rocks and hydrocarbon generation to exploration activities. The evaluation of petroleum source rocks and hydrocarbon generation is a very important skill for explorationists to define the location and type of petroleum prospects in a region. In this chapter, subsurface samples from case study (Sayun-Masilah basin) were used to determine the source rock characteristics and petroleum generative potentials of prospective source rocks. Qualitative and quantitative evaluation of the source rock in this basin was done by means of geochemical and geophysical approaches for four rock units. It is clear that Madbi Formation is considered the main source, in which the organic carbon content reached up to more than 5.2 wt%. The types of organic matter from rock-eval pyrolysis data indicated that type I kerogen is the main type, in association with type II, and a mixture of types II and III kerogens. The study of the different maturation parameters obtained from rock-eval pyrolysis, such as Tmax and vitrinite reflectance, reflects that the considered rock units are occurred in different maturation stages, ranging from immature to mature sources. One-dimensional basin modeling was performed to analyze the hydrocarbon generation and expulsion history of the source rocks in the study area based on the reconstruction of the burial and thermal maturity histories in order to improve our understanding of the hydrocarbon generation potential. Calibration of the model with measured vitrinite reflectance (%Ro) and borehole temperature (BHT) data indicates that the paleo-heat flow was high at Late Jurassic. The models also indicate that the early hydrocarbon generation in the Madbi source rock occurred during late Cretaceous and the main hydrocarbon generation has been reached approximately at Early Eocene. Therefore, the Madbi source rock can be considered as generative potentials of prospective source rock horizons in the Sayun-Masilah basin.
This volume addresses the challenges facing explorers and developers alike in a region that is becoming a major focus of the petroleum industry in the United Kingdom, Faroes and North Norway. Several West of Shetland fields are still in the appraisal phase almost a decade after discovery. Sub-volcanic exploration risks remain high: sub-volcanic structural traps are imaged poorly, and so the geophysical community is responding with the application of latest technology. The more simple reservoirs might not be large enough to prompt informed and speedy development decisions; larger fields might have a combination of complexities, requiring a phased approach to the development. Infrastructure has been slow to arrive and planned developments have been subject to dramatic swings in fiscal regime ranging from special allowances to unexpected tax increases. Environmental challenges are significant when moving into more remote, deeper water. The perception of these challenges by the third parties has become much more acute. To sustain its right to operate, the industry has to demonstrate safe drilling operations and appropriate response capability with government agencies.