Download Free Hybrid Mr Pet Imaging Book in PDF and EPUB Free Download. You can read online Hybrid Mr Pet Imaging and write the review.

The combination of two leading imaging techniques – magnetic resonance imaging and positron emission tomography – is poised to have a large impact and has recently been a driver of research and clinical applications. The hybrid instrument is capable of acquiring both datasets simultaneously and this affords a number of advantages ranging from the obvious, two datasets acquired in the time required for one, through to novel applications. This book describes the basics of MRI and PET and then the technical issues and advantages involved in bringing together the two techniques. Novel applications in preclinical settings, human imaging and tracers are described. The book is for students and scientists entering the field of MR–PET with an MRI background but lacking PET or vice versa. It provides practical details from experts working in the area.
This book serves as a reference and comprehensive guide for PET/MR neuroimaging. The field of PET/MR is rapidly evolving, however, there is no standard resource summarizing the vast information and its potential applications. This book will guide neurological molecular imaging applications in both clinical practice and the research setting. Experts from multiple disciplines, including radiologists, researchers, and physicists, have collaborated to bring their knowledge and expertise together. Sections begin by covering general considerations, including public health and economic implications, the physics of PET/MR systems, an overview of hot lab and cyclotron, and radiotracers used in neurologic PET/MRI. There is then coverage of each major disease/systemic category, including dementia and neurodegenerative disease, epilepsy localization, brain tumors, inflammatory and infectious CNS disorders, head and neck imaging, as well as vascular hybrid imaging. Together, we have created a thorough, concise and up-to-date textbook in a unique, user-friendly format. This is an ideal guide for neuroradiologists, nuclear medicine specialists, medical physicists, clinical trainees and researchers.
This book offers a wide-ranging and up-to-date overview of the basic science underlying PET and its preclinical and clinical applications in modern medicine. In addition, it provides the reader with a sound understanding of the scientific principles and use of PET in routine practice and biomedical imaging research. The opening sections address the fundamental physics, radiation safety, CT scanning dosimetry, and dosimetry of PET radiotracers, chemistry and regulation of PET radiopharmaceuticals, with information on labeling strategies, tracer quality control, and regulation of radiopharmaceutical production in Europe and the United States. PET physics and instrumentation are then discussed, covering the basic principles of PET and PET scanning systems, hybrid PET/CT and PET/MR imaging, system calibration, acceptance testing, and quality control. Subsequent sections focus on image reconstruction, processing, and quantitation in PET and hybrid PET and on imaging artifacts and correction techniques, with particular attention to partial volume correction and motion artifacts. The book closes by examining clinical applications of PET and hybrid PET and their physiological and/or molecular basis in conjunction with technical foundations in the disciplines of oncology, cardiology and neurology, PET in pediatric malignancy and its role in radiotherapy treatment planning. Basic Science of PET Imaging will meet the needs of nuclear medicine practitioners, other radiology specialists, and trainees in these fields.
Practical and clinically oriented, the third edition of Clinical Molecular Anatomic Imaging focuses on PET/CT, SPECT/CT, and PET/MR examinations – precisely the information you need to know. Ideal for clinical hybrid imaging users, it fully integrates all applications, allowing you to easily compare modalities and decide whether to use PET/CT, PET/MR, or SPECT/CT to solve a clinical dilemma. More than 1,600 high-quality illustrations document the use of integrated imaging and provide superb visual references for interpreting integrated imaging studies.
This clinically oriented book provides an up-to-date review on the various hybrid imaging modalities that may be employed for the purpose of cardiac imaging. After discussion of generic aspects of hybrid imaging, SPECT/CT, PET/CT, and PET/MRI are each considered in depth. In addition, information is provided on upcoming technologies, such as dedicated so-called fast cardiac cameras (CZT detector technology) and novel probes and radiotracers. A wide variety of topics are addressed, including important technological aspects, possible applications, imaging protocols, peculiarities of the available modalities, radiation exposure, and dose reduction. Last but not least, an estimation of the cost efficiency of dedicated and hybrid imaging devices in cardiology is provided and possible scenarios with respect to health care economics are envisioned. Hybrid Cardiac Imaging will be of particular value for nuclear medicine specialists, cardiologists, and radiologists and will also be of interest to medical physicists, medical technicians, and cardiothoracic surgeons. .
This timely atlas details advancements in PET/CT and SPECT/CT. Each chapter provides nuclear medicine practitioners, radiologists, oncologists, and residents with detailed information on normal anatomy of FDG PET/CT, variations and artifacts of FDG PET/CT, normal anatomy of non-FDG PET/CT, and normal anatomy of PET/CT and SPECT/CT. Coverage emphasizes anatomy to reinforce the names of organs and to support familiarization with normal and abnormal findings. The atlas has been compiled with help from experienced contributors from several top international imaging centers. Throughout the text, four-color images aid readers in proper interpretation.
The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation.
In compiling this textbook on the exciting novel imaging modality of PET/MRI, the editors have brought together a truly international group of experts in the field. The book is divided into two parts. The first part covers methodology and equipment and includes chapters on basic molecular medicine, contrast agents, MR attenuation and validation, and quantitative MRI and PET motion correction. The second part of the book focuses on clinical applications in oncology, cardiology, and neurology. Imaging of major neoplasms is covered in a series of individual chapters. Further chapters address functional and metabolic cardiovascular examinations and major central nervous system applications such as brain tumors and dementias. This book will be of interest to all radiologists and nuclear medicine physicians who wish to learn more about the latest developments in this important emerging imaging modality and its applications.
In this book, experts from premier institutions across the world with extensive experience in the field clearly and succinctly describe the current and anticipated uses of PET/MRI in oncology. The book also includes detailed presentations of the MRI and PET technologies as they apply to the combined PET/MRI scanners. The applications of PET/MRI in a wide range of oncological settings are well documented, highlighting characteristic findings, advantages of this dual-modality technique, and pitfalls. Whole-body PET/MRI applications and pediatric oncology are discussed separately. In addition, information is provided on PET technology designs and MR hardware for PET/MRI, MR pulse sequences and contrast agents, attenuation and motion correction, the reliability of standardized uptake value measurements, and safety considerations. The balanced presentation of clinical topics and technical aspects will ensure that the book is of wide appeal. It will serve as a reference for specialists in nuclear medicine and radiology and oncologists and will also be of interest for residents in these fields and technologists.
This comprehensive book focuses on multimodality imaging technology, including overviews of the instruments and methods followed by practical case studies that highlight use in the detection and treatment of cardiovascular diseases. Chapters cover PET-CT, SPECT-CT, SPECT-MRI, PET-MRI, PET-optical imaging, SPECT-optical imaging, photoacoustic Imaging, and hybrid intravascular imaging. It also addresses the important issues of multimodality imaging probes and image quantification. Readers from radiology and cardiology as well as medical imaging and biomedical engineering will learn essentials of the field. They will be shown how the field has advanced quantitative analysis of molecularly targeted imaging through improvements in the reliability and reproducibility of imaging data. Moreover, they will be presented with quantification algorithms and case illustrations, including coverage of such topics such as multimodality image fusion and kinetic modeling. Yi-Hwa Liu, PhD is Senior Research Scientist in Cardiovascular Medicine at Yale University School of Medicine and Technical Director of Nuclear Cardiology at Yale New Haven Hospital. He is also an Associate Professor (Adjunct) of Biomedical Imaging and Radiological Sciences at National Yang-Ming University, Taipei, Taiwan, and Professor (Adjunct) of Biomedical Engineering at Chung Yuan Christian University, Taoyuan, Taiwan. He is an elected senior member of Institute of Electrical and Electronic Engineers (IEEE) and a full member of Sigma Xi of The Scientific Research Society of North America. Albert J. Sinusas, M.D., FACC, FAHA is Professor of Medicine (Section of Cardiovascular Medicine) and Radiology and Biomedical Imaging, at Yale University School of Medicine, and Director of the Yale Translational Research Imaging Center (Y-TRIC), and Director of Advanced Cardiovascular Imaging at Yale New Haven Hospital. He is a recipient of the Society of Nuclear Medicine’s Hermann Blumgart Award.