Download Free Humanizing Mathematics And Its Philosophy Book in PDF and EPUB Free Download. You can read online Humanizing Mathematics And Its Philosophy and write the review.

This Festschrift contains numerous colorful and eclectic essays from well-known mathematicians, philosophers, logicians, and linguists celebrating the 90th birthday of Reuben Hersh. The essays offer, in part, attempts to answer the following questions set forth by Reuben himself as a focus for this volume: Can practicing mathematicians, as such, contribute anything to the philosophy of math? Can or should philosophers of math, as such, say anything to practicing mathematicians? Twenty or fifty years from now, what will be similar, and what will, or could, or should be altogether different: About the philosophy of math? About math education? About math research institutions? About data processing and scientific computing? The essays also offer glimpses into Reuben’s fertile mind and his lasting influence on the mathematical community, as well as revealing the diverse roots, obstacles and philosophical dispositions that characterize the working lives of mathematicians. With contributions from a veritable “who’s who” list of 20th century luminaries from mathematics and philosophy, as well as from Reuben himself, this volume will appeal to a wide variety of readers from curious undergraduates to prominent mathematicians.
Most philosophers of mathematics treat it as isolated, timeless, ahistorical, inhuman. Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the "humanist" idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos. What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
L.E.J. Brouwer: Collected Works, Volume 1: Philosophy and Foundations of Mathematics focuses on the principles, operations, and approaches promoted by Brouwer in studying the philosophy and foundations of mathematics. The publication first ponders on the construction of mathematics. Topics include arithmetic of integers, negative numbers, measurable continuum, irrational numbers, Cartesian geometry, similarity group, characterization of the linear system of the Cartesian or Euclidean and hyperbolic space, and non-Archimedean uniform groups on the one-dimensional continuum. The book then examines mathematics and experience and mathematics and logic. Topics include denumerably unfinished sets, continuum problem, logic of relations, consistency proofs for formal systems independent of their interpretation, infinite numbers, and problems of space and time. The text is a valuable reference for students, mathematicians, and researchers interested in the contributions of Brouwer in the studies on the philosophy and foundations of mathematics.
Mathematics has stood as a bridge between the Humanities and the Sciences since the days of classical antiquity. For Plato, mathematics was evidence of Being in the midst of Becoming, garden variety evidence apparent even to small children and the unphilosophical, and therefore of the highest educational significance. In the great central similes of The Republic it is the touchstone ofintelligibility for discourse, and in the Timaeus it provides in an oddly literal sense the framework of nature, insuring the intelligibility ofthe material world. For Descartes, mathematical ideas had a clarity and distinctness akin to the idea of God, as the fifth of the Meditations makes especially clear. Cartesian mathematicals are constructions as well as objects envisioned by the soul; in the Principles, the work ofthe physicist who provides a quantified account ofthe machines of nature hovers between description and constitution. For Kant, mathematics reveals the possibility of universal and necessary knowledge that is neither the logical unpacking ofconcepts nor the record of perceptual experience. In the Critique ofPure Reason, mathematics is one of the transcendental instruments the human mind uses to apprehend nature, and by apprehending to construct it under the universal and necessary lawsofNewtonian mechanics.
This handbook brings together leading international scholars to study the diverse figures, movements, and approaches that constitute presocratic philosophy. The study presents interpretations and evaluations of the Presocratics' accomplishments, from Thales to the sophists and from theology to science.
Physicians recognize the importance of patients' emotions in healing yet believe their own emotional responses represent lapses in objectivity. Patients complain that physicians are too detached. Halpern argues that by empathizing with patients, rather than detaching, physicians can best help them. Yet there is no consistent view of what, precisely, clinical empathy involves. This book challenges the traditional assumption that empathy is either purely intellectual or an expression of sympathy. Sympathy, according to many physicians, involves over-identifying with patients, threatening objectivity and respect for patient autonomy. How can doctors use empathy in diagnosing and treating patients rithout jeopardizing objectivity or projecting their values onto patients? Jodi Halpern, a psychiatrist, medical ethicist and philosopher, develops a groundbreaking account of emotional reasoning as the core of clinical empathy. She argues that empathy cannot be based on detached reasoning because it involves emotional skills, including associating with another person's images and spontaneously following another's mood shifts. Yet she argues that these emotional links need not lead to over-identifying with patients or other lapses in rationality but rather can inform medical judgement in ways that detached reasoning cannot. For reflective physicians and discerning patients, this book provides a road map for cultivating empathy in medical practice. For a more general audience, it addresses a basic human question: how can one person's emotions lead to an understanding of how another person is feeling?
What does it mean to conduct research for justice with youth and communities who are marginalized by systems of inequality based on race, ethnicity, sexuality, citizenship status, gender, and other categories of difference? In this collection, editors Django Paris and Maisha Winn have selected essays written by top scholars in education on humanizing approaches to qualitative and ethnographic inquiry with youth and their communities. Vignettes, portraits, narratives, personal and collaborative explorations, photographs, and additional data excerpts bring the findings to life for a better understanding of how to use research for positive social change.
This survey provides a brief and selective overview of research in the philosophy of mathematics education. It asks what makes up the philosophy of mathematics education, what it means, what questions it asks and answers, and what is its overall importance and use? It provides overviews of critical mathematics education, and the most relevant modern movements in the philosophy of mathematics. A case study is provided of an emerging research tradition in one country. This is the Hermeneutic strand of research in the philosophy of mathematics education in Brazil. This illustrates one orientation towards research inquiry in the philosophy of mathematics education. It is part of a broader practice of ‘philosophical archaeology’: the uncovering of hidden assumptions and buried ideologies within the concepts and methods of research and practice in mathematics education. An extensive bibliography is also included.
. Renewal of Life by Transmission. The most notable distinction between living and inanimate things is that the former maintain themselves by renewal. A stone when struck resists. If its resistance is greater than the force of the blow struck, it remains outwardly unchanged. Otherwise, it is shattered into smaller bits. Never does the stone attempt to react in such a way that it may maintain itself against the blow, much less so as to render the blow a contributing factor to its own continued action. While the living thing may easily be crushed by superior force, it none the less tries to turn the energies which act upon it into means of its own further existence. If it cannot do so, it does not just split into smaller pieces (at least in the higher forms of life), but loses its identity as a living thing. As long as it endures, it struggles to use surrounding energies in its own behalf. It uses light, air, moisture, and the material of soil. To say that it uses them is to say that it turns them into means of its own conservation. As long as it is growing, the energy it expends in thus turning the environment to account is more than compensated for by the return it gets: it grows. Understanding the word "control" in this sense, it may be said that a living being is one that subjugates and controls for its own continued activity the energies that would otherwise use it up. Life is a self-renewing process through action upon the environment.