Download Free Human Perception Of Visual Information Book in PDF and EPUB Free Download. You can read online Human Perception Of Visual Information and write the review.

Recent years have witnessed important advancements in our understanding of the psychological underpinnings of subjective properties of visual information, such as aesthetics, memorability, or induced emotions. Concurrently, computational models of objective visual properties such as semantic labelling and geometric relationships have made significant breakthroughs using the latest achievements in machine learning and large-scale data collection. There has also been limited but important work exploiting these breakthroughs to improve computational modelling of subjective visual properties. The time is ripe to explore how advances in both of these fields of study can be mutually enriching and lead to further progress. This book combines perspectives from psychology and machine learning to showcase a new, unified understanding of how images and videos influence high-level visual perception - particularly interestingness, affective values and emotions, aesthetic values, memorability, novelty, complexity, visual composition and stylistic attributes, and creativity. These human-based metrics are interesting for a very broad range of current applications, ranging from content retrieval and search, storytelling, to targeted advertising, education and learning, and content filtering. Work already exists in the literature that studies the psychological aspects of these notions or investigates potential correlations between two or more of these human concepts. Attempts at building computational models capable of predicting such notions can also be found, using state-of-the-art machine learning techniques. Nevertheless their performance proves that there is still room for improvement, as the tasks are by nature highly challenging and multifaceted, requiring thought on both the psychological implications of the human concepts, as well as their translation to machines.
The presentation and interpretation of visual information is essential to almost every activity in human life and most endeavors of modern technology. This book examines the current status of what is known (and not known) about human vision, how human observers interpret visual data, and how to present such data to facilitate their interpretation and use. Written by experts who are able to cross disciplinary boundaries, the book provides an educational pathway through several models of human vision; describes how the visual response is analyzed and quantified; presents current theories of how the human visual response is interpreted; discusses the cognitive responses of human observers; and examines such applications as space exploration, manufacturing, surveillance, earth and air sciences, and medicine. The book is intended for everyone with an undergraduate-level background in science or engineering with an interest in visual science. This second edition has been brought up to date throughout and contains a new chapter on "Virtual reality and augmented reality in medicine."
This comprehensive and authoritative text/reference presents a unique, multidisciplinary perspective on Shape Perception in Human and Computer Vision. Rather than focusing purely on the state of the art, the book provides viewpoints from world-class researchers reflecting broadly on the issues that have shaped the field. Drawing upon many years of experience, each contributor discusses the trends followed and the progress made, in addition to identifying the major challenges that still lie ahead. Topics and features: examines each topic from a range of viewpoints, rather than promoting a specific paradigm; discusses topics on contours, shape hierarchies, shape grammars, shape priors, and 3D shape inference; reviews issues relating to surfaces, invariants, parts, multiple views, learning, simplicity, shape constancy and shape illusions; addresses concepts from the historically separate disciplines of computer vision and human vision using the same “language” and methods.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
"This is a book about what the science of perception can tell us about visualization. There is a gold mine of information about how we see to be found in more than a century of work by vision researchers. The purpose of this book is to extract from that large body of research literature those design principles that apply to displaying information effectively"--
This text provides an introduction to computational aspects of early vision, in particular, color, stereo, and visual navigation. It integrates approaches from psychophysics and quantitative neurobiology, as well as theories and algorithms from machine vision and photogrammetry. When presenting mathematical material, it uses detailed verbal descriptions and illustrations to clarify complex points. The text is suitable for upper-level students in neuroscience, biology, and psychology who have basic mathematical skills and are interested in studying the mathematical modeling of perception.
The Handbook of Advanced Lighting Technology is a major reference work on the subject of light source science and technology, with particular focus on solid-state light sources – LEDs and OLEDs – and the development of 'smart' or 'intelligent' lighting systems; and the integration of advanced light sources, sensors, and adaptive control architectures to provide tailored illumination which is 'fit to purpose.' The concept of smart lighting goes hand-in-hand with the development of solid-state light sources, which offer levels of control not previously available with conventional lighting systems. This has impact not only at the scale of the individual user, but also at an environmental and wider economic level. These advances have enabled and motivated significant research activity on the human factors of lighting, particularly related to the impact of lighting on healthcare and education, and the Handbook provides detailed reviews of work in these areas. The potential applications for smart lighting span the entire spectrum of technology, from domestic and commercial lighting, to breakthroughs in biotechnology, transportation, and light-based wireless communication. Whilst most current research globally is in the field of solid-state lighting, there is renewed interest in the development of conventional and non-conventional light sources for specific applications. This Handbook comprehensively reviews the basic physical principles and device technologies behind all light source types and includes discussion of the state-of-the-art. The book essentially breaks down into five major sections: Section 1: The physics, materials, and device technology of established, conventional, and emerging light sources, Section 2: The science and technology of solid-state (LED and OLED) light sources, Section 3: Driving, sensing and control, and the integration of these different technologies under the concept of smart lighting, Section 4: Human factors and applications, Section 5: Environmental and economic factors and implications
If you've ever been tricked by an optical illusion, you'll have some idea about just how clever the relationship between your eyes and your brain is. This book leads one through the intricacies of the subject and demystifying how we see.
Available again, an influential book that offers a framework for understanding visual perception and considers fundamental questions about the brain and its functions. David Marr's posthumously published Vision (1982) influenced a generation of brain and cognitive scientists, inspiring many to enter the field. In Vision, Marr describes a general framework for understanding visual perception and touches on broader questions about how the brain and its functions can be studied and understood. Researchers from a range of brain and cognitive sciences have long valued Marr's creativity, intellectual power, and ability to integrate insights and data from neuroscience, psychology, and computation. This MIT Press edition makes Marr's influential work available to a new generation of students and scientists. In Marr's framework, the process of vision constructs a set of representations, starting from a description of the input image and culminating with a description of three-dimensional objects in the surrounding environment. A central theme, and one that has had far-reaching influence in both neuroscience and cognitive science, is the notion of different levels of analysis—in Marr's framework, the computational level, the algorithmic level, and the hardware implementation level. Now, thirty years later, the main problems that occupied Marr remain fundamental open problems in the study of perception. Vision provides inspiration for the continuing efforts to integrate knowledge from cognition and computation to understand vision and the brain.
Visual Perception explores fundamental topics underlying the field of visual perception, including the perception of brightness and color, the physics of light, and the optics of the eye. Although the text leans heavily on physical and physiological concepts, explanations of the relevant physics and physiology are considered. This book is organized into 16 chapters and begins with an overview of the relationship between information assimilation and the physiology of the visual system based on data gathered both in physiological and perceptual experiments. More specifically, this text discusses the nature of the human perceptual system in terms of the kinds of information that are assimilated from the world, and how this selection of information is governed by the structure of receptors and the neural circuits that are connected to them. The relationships between symbols and their corresponding physical and physiological variables are also examined. Finally, the book addresses the presence of strong lateral inhibition in the visual system and how it fits the concept of evolution. This book is aimed at undergraduate and graduate students, regardless of their academic backgrounds.