Download Free Human Locomotion Book in PDF and EPUB Free Download. You can read online Human Locomotion and write the review.

This book addresses instruments, methodologies and diagnostic methods used to evaluate and diagnose human movement, locomotion and physical status in general. Starting from historical perspective, the idea of understanding human locomotion by applying technical measurement devices and incorporating measurement data into physical representation of gross body movement is presented and explained, an approach known as inverse dynamics. With this approach as a kind of umbrella concept, components of measurement systems including relevant signal and data processing methods are described. Modern instruments to capture body movement by measuring its kinematics, kinetics and surface electromyography (sEMG) are thus described; all systems being used dominantly—if not exclusively—in a movement analysis laboratory setting. Focusing mainly on human posture and gait, but including also examples of movement patterns from selected kinesiological and sports activities, the book attempts to present essentials of biomechanics and biomedical engineering approach to this subject matter. It illustrates how data collected and elaborated by modern engineering technology can complement traditional expert knowledge of a kinesiologist or a medical doctor. The book is applicable in the fields of sports, physical activities, as well as in medical diagnostics and rehabilitation. The examples of this book’s practical application might be in evaluation of efficiency of human gait, in evaluation of skeletal muscle fatigue in physical exercise, in biomechanical diagnostics of traumatological conditions requiring orthopaedic treatment and the like. This book can also be used in planning and executing research endeavours, particularly in a clinical context as a reference for various diagnostics procedures. It presents the lecture notes of a course carrying the same name within Medical Studies in English at the University of Zagreb for more than a decade.
Design and Operation of Locomotion Systems examines recent advances in locomotion systems with multidisciplinary viewpoints, including mechanical design, biomechanics, control and computer science. In particular, the book addresses the specifications and requirements needed to achieve the proper design of locomotion systems. The book provides insights on the gait analysis of humans by considering image capture systems. It also studies human locomotion from a rehabilitation viewpoint and outlines the design and operation of exoskeletons, both for rehabilitation and human performance enhancement tasks. Additionally, the book content ranges from fundamental theory and mathematical formulations, to practical implementations and experimental testing procedures. Written and contributed by leading experts in robotics and locomotion systems Addresses humanoid locomotion from both design and control viewpoints Discusses the design and control of multi-legged locomotion systems
The importance of measurements for the proper assessment of human locomotion is increasingly being recognized. The fields of application encompass both healthy and pathological locomotion as encountered in rehabilitation medicine, orthopedics, kinesiology, sports medicine, and the like. Measurement of Human Locomotion provides an up-to-date des
Human footprints provide some of the most emotive and tangible evidence of our ancestors. They provide evidence of stature, presence, behaviour and in the case of early hominin footprints, evidence with respect to the evolution of human gait and foot anatomy. While human footprint sites are rare in the geological record the number of sites around the World has increased in recent years, along with the analytical tools available for their study. The aim of this book is to provide a definitive review of these recent developments with specific reference to the increased availability of three-dimensional digital elevation models of human tracks at many key sites. The book is divided into eight chapters. Following an introduction the second chapter reviews modern field methods in human ichnology focusing on the development of new analytical tools. The third chapter then reviews the major footprint sites around the World including details on several unpublished examples. Chapters then follow on the role of geology in the formation and preservation of tracks, on the inferences that can be made from human tracks and the final chapter explores the application of this work to forensic science. Audience: This volume will be of interest to researchers and students across a wide range of disciplines – sedimentology, archaeology, forensics and palaeoanthropology.
Thanks to improvements in motion recording technology and computer data processing, real-time, full-body 3D representations of human locomotions are now possible. This book examines 3D analysis of human locomotion and discusses fundamental aspects of functional anatomy, motor control, and neuroscience applied to locomotion. It provides advice on setting up and operating a gait laboratory along with the essentials of instrumentation and the current modeling techniques for estimating muscle forces.
In recent decades, injury has begun to gain prominence as a public health and societal problem. Slipperiness and slip, trip, and fall (STF) injuries are among the greatest obstacles to reducing the injury burden. One of the biggest challenges in STF is defining and measuring slipperiness. After over half a century of serious research on what slipperiness is and how it can be measured, rapid progress has been made in the decade of the 90s. Measuring Slipperiness: Human Locomotion and Surface Factors provides an overview of basic concepts and definitions of terms related to the 'measurement of slipperiness' from the onset of a foot slide to a gradual loss of balance and a fall. The book includes expert group perspectives on human-centered (biomechanical, locomotive, perceptual, and cognitive), and surface-centered (roughness, friction) aspects and approaches. It addresses the injury burden of slipperiness, globally reviews existing slipmeters, and summarizes areas of consensus in the field of slipperiness measurement. Perhaps the most comprehensive treatment of the subject ever compiled, the book contains contributions from North America, Europe, Asia, and Oceania including the National Laboratories of Finland, France, the U.K., and the U.S. A valuable, state-of-the-art textbook, it provides students with a useful starting point for understanding the many aspects of STF.
Gait analysis is the systematic study of human walking, using the eye and brain of experienced observers, augmented by instrumentation for measuring body movements, body mechanics, and the activity of the muscles. Since Aristotle’s work on gait analysis more than 2000 years ago, it has become an established clinical science used extensively in the healthcare and rehabilitation fields for diagnosis and treatment. Forensic Gait Analysis details the more recent, and rapidly developing, use of gait analysis in the forensic sciences. The book considers the use of observational gait analysis, based on video recordings, to assist in the process of identification or exclusion. With the increase in use of CCTV and surveillance systems over the last 20 to 30 years, there has been a steady and rapid increase in the use of gait as evidence. Currently, gait analysis is widely used in the UK in criminal investigations, with increasing awareness of its potential use in the US, Europe, and globally. The book details the history of the science, current practices, and of the emergent application to establish best-practice standards that conform to those of other forensic science disciplines. Engagement with the Forensic Science Regulator, and the Chartered Society of Forensic Sciences in the UK, and the International Association for Identification has helped to ensure and enhance the quality assurance of forensic gait analysis. However, there remains a fundamental lack of standardized training and methodology for use in evidentiary and investigative casework. This book fills that void, serving as one of the first to describe the current state of practice, capabilities and limitations, and to outline methods, standards of practice and expectations of the gait analyst as a forensic practitioner. Forensic Gait Analysis reflects current research and forensic practice and will serve as a state-of-the-art guide to the use of gait analysis in the forensic context—for both education and training purposes. It will be a welcome addition to the libraries of professionals in the areas of podiatry, gait analysis, forensic video analysis, law enforcement, and legal practice.
This comprehensive textbook illustrates the excitement and the difficulties of working at the interface between pure and applied research. Written with the student firmly in mind, the text provides a concise account of the basic anatomy and function of the parts of the CNS involved in controlling body movement. Clinical information is integrated throughout and, wherever possible, details of relevant experiments given.
This book addresses how the general principles of biology influence the human capacity for locomotion, and, conversely, how understanding the nature of muscular activity might provide insights into the basic nature of living beings. Through a series of essays, the book relates the evolutionary basis of animal locomotion to recognizing the determinants of exercise capacity. While raising more questions than providing answers, the discussions will assume that without knowing the correct questions to ask, the answers will not be forthcoming. At the root of this book lies the central query: what is it that separates the principles governing the function of living beings from those that dictate the inanimate world? The discussions here address this issue from the expectation that clues to the answer can be obtained through understanding adaptations to the stresses imposed by physical exercise. As such, the book provides thought-provoking analyses of the biological basis of locomotion that will stimulate future efforts to understand these phenomena.