Download Free Human Gene Evolution Book in PDF and EPUB Free Download. You can read online Human Gene Evolution and write the review.

Human Evolutionary Genetics is a groundbreaking text which for the first time brings together molecular genetics and genomics to the study of the origins and movements of human populations. Starting with an overview of molecular genomics for the non-specialist (which can be a useful review for those with a more genetic background), the book shows h
In 2001, scientists were finally able to determine the full human genome sequence, and with the discovery began a genomic voyage back in time. Since then, we have sequenced the full genomes of a number of mankind's primate relatives at a remarkable rate. The genomes of the common chimpanzee (2005) and bonobo (2012), orangutan (2011), gorilla (2012), and macaque monkey (2007) have already been identified, and the determination of other primate genomes is well underway. Researchers are beginning to unravel our full genomic history, comparing it with closely related species to answer age-old questions about how and when we evolved. For the first time, we are finding our own ancestors in our genome and are thereby gleaning new information about our evolutionary past. In Ancestors in Our Genome, molecular anthropologist Eugene E. Harris presents us with a complete and up-to-date account of the evolution of the human genome and our species. Written from the perspective of population genetics, and in simple terms, the book traces human origins back to their source among our earliest human ancestors, and explains many of the most intriguing questions that genome scientists are currently working to answer. For example, what does the high level of discordance among the gene trees of humans and the African great apes tell us about our respective separations from our common ancestor? Was our separation from the apes fast or slow, and when and why did it occur? Where, when, and how did our modern species evolve? How do we search across genomes to find the genomic underpinnings of our large and complex brains and language abilities? How can we find the genomic bases for life at high altitudes, for lactose tolerance, resistance to disease, and for our different skin pigmentations? How and when did we interbreed with Neandertals and the recently discovered ancient Denisovans of Asia? Harris draws upon extensive experience researching primate evolution in order to deliver a lively and thorough history of human evolution. Ancestors in Our Genome is the most complete discussion of our current understanding of the human genome available.
The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
Humanity's physical design flaws have long been apparent--we get hemorrhoids and impacted wisdom teeth, for instance--but do the imperfections extend down to the level of our genes? Inside the Human Genome is the first book to examine the philosophical question of why, from the perspectives of biochemistry and molecular genetics, flaws exist in the biological world. Distinguished evolutionary geneticist John Avise offers a panoramic yet penetrating exploration of the many gross deficiencies in human DNA--ranging from mutational defects to built-in design faults--while at the same time offering a comprehensive treatment of recent findings about the human genome. The author shows that the overwhelming scientific evidence for genomic imperfection provides a compelling counterargument to intelligent design. He also develops a case that theologians should welcome rather than disavow these discoveries. The evolutionary sciences can help mainstream religions escape the shackles of Intelligent Design, and thereby return religion to its rightful realm--not as the secular interpreter of the biological minutiae of our physical existence, but rather as a respectable philosophical counselor on grander matters of ultimate concern.
Humans are a striking anomaly in the natural world. While we are similar to other mammals in many ways, our behavior sets us apart. Our unparalleled ability to adapt has allowed us to occupy virtually every habitat on earth using an incredible variety of tools and subsistence techniques. Our societies are larger, more complex, and more cooperative than any other mammal's. In this stunning exploration of human adaptation, Peter J. Richerson and Robert Boyd argue that only a Darwinian theory of cultural evolution can explain these unique characteristics. Not by Genes Alone offers a radical interpretation of human evolution, arguing that our ecological dominance and our singular social systems stem from a psychology uniquely adapted to create complex culture. Richerson and Boyd illustrate here that culture is neither superorganic nor the handmaiden of the genes. Rather, it is essential to human adaptation, as much a part of human biology as bipedal locomotion. Drawing on work in the fields of anthropology, political science, sociology, and economics—and building their case with such fascinating examples as kayaks, corporations, clever knots, and yams that require twelve men to carry them—Richerson and Boyd convincingly demonstrate that culture and biology are inextricably linked, and they show us how to think about their interaction in a way that yields a richer understanding of human nature. In abandoning the nature-versus-nurture debate as fundamentally misconceived, Not by Genes Alone is a truly original and groundbreaking theory of the role of culture in evolution and a book to be reckoned with for generations to come. “I continue to be surprised by the number of educated people (many of them biologists) who think that offering explanations for human behavior in terms of culture somehow disproves the suggestion that human behavior can be explained in Darwinian evolutionary terms. Fortunately, we now have a book to which they may be directed for enlightenment . . . . It is a book full of good sense and the kinds of intellectual rigor and clarity of writing that we have come to expect from the Boyd/Richerson stable.”—Robin Dunbar, Nature “Not by Genes Alone is a valuable and very readable synthesis of a still embryonic but very important subject straddling the sciences and humanities.”—E. O. Wilson, Harvard University
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.
Science need not be dull and bogged down by jargon, as Richard Dawkins proves in this entertaining look at evolution. The themes he takes up are the concepts of altruistic and selfish behaviour; the genetical definition of selfish interest; the evolution of aggressive behaviour; kinshiptheory; sex ratio theory; reciprocal altruism; deceit; and the natural selection of sex differences. 'Should be read, can be read by almost anyone. It describes with great skill a new face of the theory of evolution.' W.D. Hamilton, Science
In Gene Sharing and Evolution Piatigorsky explores the generality and implications of gene sharing throughout evolution and argues that most if not all proteins perform a variety of functions in the same and in different species, and that this is a fundamental necessity for evolution.
"A subject collection from Cold Spring Harbor perspectives in medicine."