Download Free Huckel Molecular Orbital Theory Book in PDF and EPUB Free Download. You can read online Huckel Molecular Orbital Theory and write the review.

Huckel Molecular Orbital Theory aims to be a simple, descriptive, and non-mathematical introduction to the Huckel molecular orbital theory and its applications in organic chemistry, thus the more basic text found in the book. The book, after an introduction to related concepts such as quantum mechanics and chemical bonding, discusses the Huckel molecular orbital theory and its basic assumptions; the variation principle and the basic Huckel method; and the use of symmetry properties in simplifying Huckel method orbital calculations. The book also covers other related topics such as the extensions and improvements of the simple Huckel method; the quantitative significance Huckel molecular orbital results; and the principle of conservation of orbital symmetry. The text is recommended for undergraduate students of organic chemistry who wish to be acquainted with the basics of the Huckel molecular orbital theory.
A practical introduction to orbital interaction theory and its applications in modern organic chemistry Orbital interaction theory is a conceptual construct that lies at the very heart of modern organic chemistry. Comprising a comprehensive set of principles for explaining chemical reactivity, orbital interaction theory originates in a rigorous theory of electronic structure that also provides the basis for the powerful computational models and techniques with which chemists seek to describe and exploit the structures and thermodynamic and kinetic stabilities of molecules. Orbital Interaction Theory of Organic Chemistry, Second Edition introduces students to the fascinating world of organic chemistry at the mechanistic level with a thoroughly self-contained, well-integrated exposition of orbital interaction theory and its applications in modern organic chemistry. Professor Rauk reviews the concepts of symmetry and orbital theory, and explains reactivity in common functional groups and reactive intermediates in terms of orbital interaction theory. Aided by numerous examples and worked problems, he guides readers through basic chemistry concepts, such as acid and base strength, nucleophilicity, electrophilicity, and thermal stability (in terms of orbital interactions), and describes various computational models for describing those interactions. Updated and expanded, this latest edition of Orbital Interaction Theory of Organic Chemistry includes a completely new chapter on organometallics, increased coverage of density functional theory, many new application examples, and worked problems. The text is complemented by an interactive computer program that displays orbitals graphically and is available through a link to a Web site. Orbital Interaction Theory of Organic Chemistry, Second Edition is an excellent text for advanced-level undergraduate and graduate students in organic chemistry. It is also a valuable working resource for professional chemists seeking guidance on interpreting the quantitative data produced by modern computational chemists.
These notes summarize in part lectures held regularly at the University of Zurich and, in the Summer of 1974, at the Semi nario Latinoamericano de QUimica Cuantica in Mexico. I am grateful to those who have encouraged me to publish these lec tures or have contributed to them by their suggestions. In particular, I wish to thank Professor J. Keller of the Univer sidad Nacional Autonoma in Mexico, Professor H. Labhart and Professor H. Fischer of the University of Zurich, as well as my former students Dr. J. Kuhn, Dr. W. Hug and Dr. R. Geiger. The aim of these notes is to provtde a summary and concise introduction to elementary molecular orbital theory, with an emphasis on semiempirical methods. Within the last decade the development and refinement of ab initio computations has tended to overshadow the usefulness of semiempirical methods. However, both approaches have their justification. Ab initio methods are designed for accurate predictions, at the expense of greater computational labor. The aim of semiempirical methods mainly lies in a semiquantitative classification of electronic pro perties and in the search for regularities within given classes of larger molecules. The reader is supposed to have had some previous basic instruc tion in quantum mechanics, such as is now offered in many uni versities to chemists in their third or fourth year of study. The bibliography should encourage the reader to consult other texts, in particular also selected publications in scientific journals.
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom, many-electron atoms, and principles of quantum mechanics. It then provides thorough treatments of variation and perturbation methods, group theory, ab initio theory, Huckel and extended Huckel methods, qualitative MO theory, and MO theory of periodic systems. Chapters are completed with exercises to facilitate self-study. Solutions to selected exercises are included. Assumes little mathematical or physical sophistication Emphasizes understanding of the techniques and results of quantum chemistry Includes improved coverage of time-dependent phenomena, term symbols, and molecular rotation and vibration Provides a new chapter on molecular orbital theory of periodic systems Features new exercise sets with solutions Includes a helpful new appendix that compiles angular momentum rules from operator algebra