Download Free Host Guest Molecular Interactions Book in PDF and EPUB Free Download. You can read online Host Guest Molecular Interactions and write the review.

Composed of contributions from experts in the chemical and biological sciences, it explores host-guest molecular interactions leading to the formation of molecular assemblies containing two or more species. Exciting applications are emerging in this field and it is expected that improved understanding of the interactions in synthetic host molecule complexes will lead to a better understanding of the more complex biological systems. Topics include biomimetic chemistry, preorganization, self-assembly, template-directed synthesis, antibiotic binding to peptides and DNA, interactions between proteins and other molecules.
This book provides a complete overview of cucurbituril chemistry, covering fundamental aspects including history, synthesis and host-guest chemistry.
Comprehensive Supramolecular Chemistry II, Second Edition, Nine Volume Set is a ‘one-stop shop’ that covers supramolecular chemistry, a field that originated from the work of researchers in organic, inorganic and physical chemistry, with some biological influence. The original edition was structured to reflect, in part, the origin of the field. However, in the past two decades, the field has changed a great deal as reflected in this new work that covers the general principles of supramolecular chemistry and molecular recognition, experimental and computational methods in supramolecular chemistry, supramolecular receptors, dynamic supramolecular chemistry, supramolecular engineering, crystallographic (engineered) assemblies, sensors, imaging agents, devices and the latest in nanotechnology. Each section begins with an introduction by an expert in the field, who offers an initial perspective on the development of the field. Each article begins with outlining basic concepts before moving on to more advanced material. Contains content that begins with the basics before moving on to more complex concepts, making it suitable for advanced undergraduates as well as academic researchers Focuses on application of the theory in practice, with particular focus on areas that have gained increasing importance in the 21st century, including nanomedicine, nanotechnology and medicinal chemistry Fully rewritten to make a completely up-to-date reference work that covers all the major advances that have taken place since the First Edition published in 1996
Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water Written by experts in their respective field, this comprehensive reference covers various aspects of supramolecular chemistry in water?from fundamental aspects to applications. It provides readers with a basic introduction to the current understanding of the properties of water and how they influence molecular recognition, and examines the different receptor types available in water and the types of substrates that can be bound. It also looks at areas to where they can be applied, such as materials, optical sensing, medicinal imaging, and catalysis. Supramolecular Chemistry in Water offers five major sections that address important topics like water properties, molecular recognition, association and aggregation phenomena, optical detection and imaging, and supramolecular catalysis. It covers chemistry and physical chemistry of water; water-mediated molecular recognition; peptide and protein receptors; nucleotide receptors; carbohydrate receptors; and ion receptors. The book also teaches readers all about coordination compounds; self-assembled polymers and gels; foldamers; vesicles and micelles; and surface-modified nanoparticles. In addition, it provides in-depth information on indicators and optical probes, as well as probes for medical imaging. -Covers, in a timely manner, an emerging area in chemistry that is growing more important every day -Addresses topics such as molecular recognition, aggregation, catalysis, and more -Offers comprehensive coverage of everything from fundamental aspects of supramolecular chemistry in water to its applications -Edited by one of the leading international scientists in the field Supramolecular Chemistry in Water is a one-stop-resource for all polymer chemists, catalytic chemists, biochemists, water chemists, and physical chemists involved in this growing area of research.
An amphiphile is a molecule that contains a hydrophilic part and a hydrophobic part, linked by covalent bonding. Supramolecular amphiphiles (supra-amphiphiles) are amphiphiles linked by non-covalent interactions. As they employ non-covalent interactions, these species demonstrate adaptability and reversibility in conformational transformation, making them one of the most important emerging species in supramolecular chemistry. They have proven important in bridging the gap between molecular architecture and functional assembly. This book is written and edited by the current leaders in the topic and contains a foreword from Professor Jean-Marie Lehn, a father of the supramolecular chemistry field. Bringing together supramolecular chemistry and colloidal and interfacial science, the book provides a detailed and systematic introduction to supramolecular amphiphiles. Chapters explain how to employ non-covalent interactions to fabricate supra-amphiphiles. The book opens with an introduction to the history and development of the field, followed by chapters focussing on each type of interaction, including host-guest interaction, electrostatic interaction, charge-transfer interaction, hydrogen bonding and dynamic covalent bonds. This book will be a valuable resource for students new to this field and experienced researchers wanting to explore the wider context of their work.
Nontraditional Activation Methods in Green and Sustainable Applications: Microwaves; Ultrasounds; Photo-, Electro- and Mechan-ochemistry and High Hydrostatic Pressure provides a broad overview of non-traditional activation methods to help readers identify and use appropriate approaches in reducing the environmental impact of their work. Sections discuss the fundamental principles of each method and provide examples of their practical use, illustrating their usefulness. Given the importance of expanding laboratory based technologies to the industrial level, chapters that cover both existing and potential industrial and environmental applications are also included. Highlighting the usefulness and adaptability of these methods for a range of practical applications, this book is a practical guide for both those involved with the design and application of synthetic methodologies and those interested in the implementation and impact of green chemistry principles in practice, from synthetic and medicinal chemists, to food developers and environmental policy planners. Discusses, and critically assesses, the advantages of non-traditional activation methods in green and sustainable chemistry applications Features individual chapters written by renowned experts in the field Contains extensive, state-of-the-art reference sections, providing critically filtered information to readers
Connects fundamental knowledge of multivalent interactions with current practice and state-of-the-art applications Multivalency is a widespread phenomenon, with applications spanning supramolecular chemistry, materials chemistry, pharmaceutical chemistry and biochemistry. This advanced textbook provides students and junior scientists with an excellent introduction to the fundamentals of multivalent interactions, whilst expanding the knowledge of experienced researchers in the field. Multivalency: Concepts, Research & Applications is divided into three parts. Part one provides background knowledge on various aspects of multivalency and cooperativity and presents practical methods for their study. Fundamental aspects such as thermodynamics, kinetics and the principle of effective molarity are described, and characterisation methods, experimental methodologies and data treatment methods are also discussed. Parts two and three provide an overview of current systems in which multivalency plays an important role in chemistry and biology, with a focus on the design rules, underlying chemistry and the fundamental principles of multivalency. The systems covered range from chemical/materials-based ones such as dendrimers and sensors, to biological systems including cell recognition and protein binding. Examples and case studies from biochemistry/bioorganic chemistry as well as synthetic systems feature throughout the book. Introduces students and young scientists to the field of multivalent interactions and assists experienced researchers utilising the methodologies in their work Features examples and case studies from biochemistry/bioorganic chemistry, as well as synthetic systems throughout the book Edited by leading experts in the field with contributions from established scientists Multivalency: Concepts, Research & Applications is recommended for graduate students and junior scientists in supramolecular chemistry and related fields, looking for an introduction to multivalent interactions. It is also highly useful to experienced academics and scientists in industry working on research relating to multivalent and cooperative systems in supramolecular chemistry, organic chemistry, pharmaceutical chemistry, chemical biology, biochemistry, materials science and nanotechnology.
Supramolecular chemistry has become not only a major field of chemistry, but is also a vivid interface between chemistry, biology, physics, and materials science. Although still a relatively young field, termini such as molecular recognition, host-guest chemistry, or self-assembly are now common knowledge even for chemistry students, and research has already been honored with a Nobel Prize. This first book on supramolecular organometallic chemistry combines two areas in chemistry that are experiencing the fastest developments. It provides a comprehensive review of various organometallic assemblies, arranged according to the types of intermolecular bonding. Details on the synthesis, structures, and properties of these compounds will be a valuable asset to the scientific community. The broad spectrum of assemblies containing main group element, transition metal, or f-element metal and a diverse range of ligands, held together by different bonding interactions make this a fascinating compilation. Illustrated extensively, this book is a very easily accessible, yet wide-ranging source of information.
Building on decades of “host-guest” research, recent years have seen a surge of activity in water-soluble supramolecular receptors for protein recognition and assembly. Progress has been particularly rich in the area of calixarenes, cucurbiturils and molecular tweezers. Emerging applications include controlled protein assembly in solution, crystal engineering, supramolecular control of catalysis (both in vitro and in vivo), as well as novel mechanisms of protein-interaction inhibition with relevance to amyloids and disease. One challenge at the interface of supramolecular chemistry and protein science is to increase interaction and collaboration between chemists and biochemists/structural biologists.This book addresses the exciting interface of supramolecular chemistry and protein science. Chapters cover supramolecular approaches to protein recognition, assembly and regulation. Principles outlined will highlight the opportunities that are readily accessible to collaborating chemists and biochemists, enriching the breadth and scope of this multidisciplinary field. Supramolecular Protein Chemistry will be of particular interest to graduate students and researchers working in supramolecular chemistry, protein science, self-assembly, biomaterials, biomedicine and biotechnology.
The fundamentals of "supramolecular chemistry" to the latest developments on the subject are covered by this book. It sets out to explain the topic in a relatively easy way. The basic concepts of molecular recognition chemistry are included. Molecules with fascinating shapes and functions such as fullerenes, carbon nanotubes, dendrimers, rotaxane, and catenane, and molecular assemblies are also explained. Thereafter applications of supermolecules to nanotechnology are introduced with many examples of molecular devices. The last part of the book describes biological supermolecules and their mimics. Though simply explained undergraduate and graduate students in Chemistry will be able to use aspects of this work as an advanced textbook.