Download Free Homologous Recombination And Gene Silencing In Plants Book in PDF and EPUB Free Download. You can read online Homologous Recombination And Gene Silencing In Plants and write the review.

Higher eukaryotes are characterized by the allocation of distinct functions to numerous types of differentiated cells. Whereas in animals the well-defined, protected cells of the germ line separate early, germ cells in plants differentiate from somatic cells only after many cycles of mitotic division. Therefore somatic mutations in plants can be transmitted via the germ cells to the progeny. There is thus a clear need for somatic tissues to maintain their genetic integrity in the face of environmental challenges, and two types of interactions have been shown to play important roles in the conservation as well as flexibility of plant genomes: homologous recombination of repeated sequences and silencing of multiplied genes. Sensitive methods have been developed that allow greater insights into the dynamics of the genome. This book summarizes current knowledge and working hypotheses about the frequencies and mechanisms of mitochondrial, plastid, nuclear and viral recombination and the inactivation of repeated genes in plants. Despite rapid developments in the field, it is often not possible to provide final answers. Thus, it is an additional task of this book to define the open questions and future challenges. The book is addressed to scientists working on plant biology and recombination, to newcomers in the field and to advanced biology students.
This book is an up-to-date and comprehensive collection of reviews on various aspects of epigenetic gene silencing in plants. Research on this topic has undergone explosive growth during the past decade and has revealed novel features of gene regulation and plant defense responses that also apply to animals and fungi. Gene silencing is relevant for agricultural biotechnology because stable expression of transgenes is required for the successful commercialization of genetically engineered crops. The reviews have been written by distinguished authors who have made significant contributions to plant gene silencing research. This volume supersedes other books on gene silencing by focussing on plant systems, where many pioneering experiments have been performed, and by including the latest developments from top laboratories. The book is geared toward advanced students of genetics and plant sciences as well as applied and basic research scientists who work with transgenic organisms and epigenetic regulation of gene expression.
In recent years several different gene silencing phenomena have been discovered in plants. The book summarizes the most recent data on gene silencing phenomena such as trans-, inactivation, paramutation and co-suppression. Plant researchers will find this edition a valuable help in differentiating between a number of puzzling and partly contradictory gene silencing events. Those not familiar with plant molecular biology are introduced into the relevant methods and scientific models. In addition examples and models of gene silencing in flamentous fungi, Drosophila and mammalian systems are presented. By providing a comparative update on gene silencing effects in different eukaryotes, this book should stimulate communication among scientists working in diverse areas of eukaryotic gene regulation.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
In this book, plant biology is considered from the perspective of plants and their surrounding environment, including both biotic and abiotic interactions. The intended audience is undergraduate students in the middle or final phases of their programs of study. Topics are developed to provide a rudimentary understanding of how plant-environment interactions span multiple spatiotemporal scales, and how this rudimentary knowledge can be applied to understand the causes of ecosystem vulnerabilities in the face of global climate change and expansion of natural resource use by human societies. In all chapters connections are made from smaller to larger scales of ecological organization, providing a foundation for understanding plant ecology. Where relevant, environmental threats to ecological systems are identified and future research needs are discussed. As future generations take on the responsibility for managing ecosystem goods and services, one of the most effective resources that can be passed on is accumulated knowledge of how organisms, populations, species, communities and ecosystems function and interact across scales of organization. Molecular Biology is intended to provide some of that knowledge, and hopefully provide those generations with the ability to avoid some of the catastrophic environmental mistakes that prior generations have made.
A recent volume of this series (Signals and Signal Transduction Pathways in Plants (K. Palme, ed.) Plant Molecular Biology 26, 1237-1679) described the relay races by which signals are transported in plants from the sites of stimuli to the gene expression machinery of the cell. Part of this machinery, the transcription apparatus, has been well studied in the last two decades, and many important mechanisms controlling gene expression at the transcriptional level have been elucidated. However, control of gene expression is by no means complete once the RNA has been produced. Important regulatory devices determine the maturation and usage of mRNA and the fate of its translation product. Post-transcriptional regulation is especially important for generating a fast response to environmental and intracellular signals. This book summarizes recent progress in the area of post-transcriptional regulation of gene expression in plants. 18 chapters of the book address problems of RNA processing and stability, regulation of translation, protein folding and degradation, as well as intracellular and cell-to-cell transport of proteins and nucleic acids. Several chapters are devoted to the processes taking place in plant organelles.
This second edition provides a comprehensive review of various gene silencing methodologies and applications. Chapters detail a historical overview of gene silencing mechanisms in plants, vectors, and strategies available for plant gene silencing, practical applications of gene silencing, bioinformatics tools, and other resources. In addition to these review chapters, this book includes methodology for virus-induced gene silencing (VIGS), understanding plant stress responses using VIGS, miRNA identification, DNA interference, host-induced gene silencing, artificial miRNAs for gene silencing, and high throughput RNAi. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Plant Gene Silencing: Methods and Protocols, Second Edition aims to further the understanding of functional relevance of target genes using gene silencing methods and technologies in commercial plant varieties.