Download Free Homogeneous Relativistic Cosmologies Book in PDF and EPUB Free Download. You can read online Homogeneous Relativistic Cosmologies and write the review.

Addressing a variety of theoretical cosmological problems, and emphasizing a mathematical approach, this volume nicely complements Peebles' Physical Cosmology (Princeton Series in Physics, 1971). Ryan and Shepley have concentrated on the structure of models of the universe. By using a modern terminology that emphasizes the operator nature of vectors and tensors, as opposed to their components in a particular coordinate system, the authors develop modern tensor analysis to the point where it can be applied to general relativistic cosmology. They then use it to describe homogeneous cosmologies in considerable detail. Both students and researchers are likely to find these techniques especially useful. Among their subjects are: spaces with groups of motions; singularities; Taub-NUT-Misner space; Bianchitype models; Hamiltonian cosmology; and perturbations in anisotropic models. A brief section on observations is also included, as is a complete bibliography. A final section presents graded exercises that underscore the potential yet unrealized in this area of study. Originally published in 1975. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Cosmology has been transformed by dramatic progress in high-precision observations and theoretical modelling. This book surveys key developments and open issues for graduate students and researchers. Using a relativistic geometric approach, it focuses on the general concepts and relations that underpin the standard model of the Universe. Part I covers foundations of relativistic cosmology whilst Part II develops the dynamical and observational relations for all models of the Universe based on general relativity. Part III focuses on the standard model of cosmology, including inflation, dark matter, dark energy, perturbation theory, the cosmic microwave background, structure formation and gravitational lensing. It also examines modified gravity and inhomogeneity as possible alternatives to dark energy. Anisotropic and inhomogeneous models are described in Part IV, and Part V reviews deeper issues, such as quantum cosmology, the start of the universe and the multiverse proposal. Colour versions of some figures are available at www.cambridge.org/9780521381154.
Nonlinear dynamical systems play an important role in a number of disciplines. The physical, biological, economic and even sociological worlds are comprised of com plex nonlinear systems that cannot be broken down into the behavior of their con stituents and then reassembled to form the whole. The lack of a superposition principle in such systems has challenged researchers to use a variety of analytic and numerical methods in attempts to understand the interesting nonlinear interactions that occur in the World around us. General relativity is a nonlinear dynamical theory par excellence. Only recently has the nonlinear evolution of the gravitational field described by the theory been tackled through the use of methods used in other disciplines to study the importance of time dependent nonlinearities. The complexity of the equations of general relativity has been (and still remains) a major hurdle in the formulation of concrete mathematical concepts. In the past the imposition of a high degree of symmetry has allowed the construction of exact solutions to the Einstein equations. However, most of those solutions are nonphysical and of those that do have a physical significance, many are often highly idealized or time independent.
This is an introductory textbook on applications of general relativity to astrophysics and cosmology. The aim is to provide graduate students with a toolkit for understanding astronomical phenomena that involve velocities close to that of light or intense gravitational fields. The approach taken is first to give the reader a thorough grounding in special relativity, with space-time the central concept, following which general relativity presents few conceptual difficulties. Examples of relativistic gravitation in action are drawn from the astrophysical domain. The book can be read on two levels: first as an introductory fast-track course, and then as a detailed course reinforced by problems which illuminate technical examples. The book has extensive links to the literature of relativistic astrophysics and cosmology.
General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.
A student-friendly style, over 100 illustrations, and numerous exercises are brought together in this textbook for advanced undergraduate and beginning graduate students in physics and mathematics. Lewis Ryder develops the theory of general relativity in detail. Covering the core topics of black holes, gravitational radiation, and cosmology, he provides an overview of general relativity and its modern ramifications. The book contains chapters on gravitational radiation, cosmology, and connections between general relativity and the fundamental physics of the microworld. It explains the geometry of curved spaces and contains key solutions of Einstein's equations - the Schwarzschild and Kerr solutions. Mathematical calculations are worked out in detail, so students can develop an intuitive understanding of the subject, as well as learn how to perform calculations. The book also includes topics concerned with the relation between general relativity and other areas of fundamental physics. Selected solutions for instructors are available under Resources.
This book is written in a pedagogical style intelligible for graduate students. It reviews recent progress in black-hole and wormhole theory and in mathematical cosmology within the framework of Einstein's field equations and beyond, including quantum effects. This collection of essays, written by leading scientists of long standing reputation, should become an indispensable source for future research.
Einstein's standard and battle-tested geometric theory of gravity--spacetime tells mass how to move and mass tells spacetime how to curve--is expounded in this book by Ignazio Ciufolini and John Wheeler. They give special attention to the theory's observational checks and to two of its consequences: the predicted existence of gravitomagnetism and the origin of inertia (local inertial frames) in Einstein's general relativity: inertia here arises from mass there. The authors explain the modern understanding of the link between gravitation and inertia in Einstein's theory, from the origin of inertia in some cosmological models of the universe, to the interpretation of the initial value formulation of Einstein's standard geometrodynamics; and from the devices and the methods used to determine the local inertial frames of reference, to the experiments used to detect and measure the "dragging of inertial frames of reference." In this book, Ciufolini and Wheeler emphasize present, past, and proposed tests of gravitational interaction, metric theories, and general relativity. They describe the numerous confirmations of the foundations of geometrodynamics and some proposed experiments, including space missions, to test some of its fundamental predictions--in particular gravitomagnetic field or "dragging of inertial frames" and gravitational waves.
This is the proceedings of the 9th conference in this series. In addition to papers presented at the conference proper, it contains some papers delivered at Peter G Bergmann's 75th Birthday meeting (Capri, 24 Sept 1990). Among the subjects covered are cosmology and astrophysics, both theoretical and experimental.