Download Free History Of Mathematics By David Eugene Smith Special Topics Of Elementary Mathematics Book in PDF and EPUB Free Download. You can read online History Of Mathematics By David Eugene Smith Special Topics Of Elementary Mathematics and write the review.

Within this two-volume edition, Professor Smith covers the entire history of mathematics in the Near and Far East and the West, from primitive number concepts to the calculus. His account is distinguished by impeccable scholarship combined with unusual clarity and readability. Footnotes add many technical points outside the book's actual line of development and direct the reader to disputed matters and source readings. Hundreds of illustrations from Egyptian papyri, Hindu, Chinese, and Japanese manuscripts, Greek and Roman texts, Medieval treatises, maps, portraits, etc. are used along with modern graphs and diagrams. Every major figure from Euclid to Descartes, Gauss, and Riemann and hundreds of lesser-known figures — Theon of Smyrna, Rabbi ben Ezra, Radulph of Laon, Mersenns, Benedetti, and more — are considered both with respect to specific problems and with an awareness of their overall influence on mathematics. Volume II: Special Topics, considering mathematics in terms of arithmetic geometry, algebra, trig, calculus, calculating machines, and other specific fields and problems. 192 Topics for Discussion. 195 illustrations. Index.
This ground-breaking book investigates how the learning and teaching of mathematics can be improved through integrating the history of mathematics into all aspects of mathematics education: lessons, homework, texts, lectures, projects, assessment, and curricula. It draws upon evidence from the experience of teachers as well as national curricula, textbooks, teacher education practices, and research perspectives across the world. It includes a 300-item annotated bibliography of recent work in the field in eight languages.
Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.
A History of Mathematics: From Mesopotamia to Modernity covers the evolution of mathematics through time and across the major Eastern and Western civilizations. It begins in Babylon, then describes the trials and tribulations of the Greek mathematicians. The important, and often neglected, influence of both Chinese and Islamic mathematics is covered in detail, placing the description of early Western mathematics in a global context. The book concludes with modern mathematics, covering recent developments such as the advent of the computer, chaos theory, topology, mathematical physics, and the solution of Fermat's Last Theorem. Containing more than 100 illustrations and figures, this text, aimed at advanced undergraduates and postgraduates, addresses the methods and challenges associated with studying the history of mathematics. The reader is introduced to the leading figures in the history of mathematics (including Archimedes, Ptolemy, Qin Jiushao, al-Kashi, al-Khwarizmi, Galileo, Newton, Leibniz, Helmholtz, Hilbert, Alan Turing, and Andrew Wiles) and their fields. An extensive bibliography with cross-references to key texts will provide invaluable resource to students and exercises (with solutions) will stretch the more advanced reader.
The interest earned on a bank account, the arrangement of seeds in a sunflower, and the shape of the Gateway Arch in St. Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.
Medieval Europe was a meeting place for the Christian, Jewish, and Islamic civilizations, and the fertile intellectual exchange of these cultures can be seen in the mathematical developments of the time. This sourcebook presents original Latin, Hebrew, and Arabic sources of medieval mathematics, and shows their cross-cultural influences. Most of the Hebrew and Arabic sources appear here in translation for the first time. Readers will discover key mathematical revelations, foundational texts, and sophisticated writings by Latin, Hebrew, and Arabic-speaking mathematicians, including Abner of Burgos's elegant arguments proving results on the conchoid—a curve previously unknown in medieval Europe; Levi ben Gershon’s use of mathematical induction in combinatorial proofs; Al-Mu’taman Ibn Hūd’s extensive survey of mathematics, which included proofs of Heron’s Theorem and Ceva’s Theorem; and Muhyī al-Dīn al-Maghribī’s interesting proof of Euclid’s parallel postulate. The book includes a general introduction, section introductions, footnotes, and references. The Sourcebook in the Mathematics of Medieval Europe and North Africa will be indispensable to anyone seeking out the important historical sources of premodern mathematics.