Download Free Higher Order Asymptotic Theory For Nonparametric Time Series Analysis And Related Contributions Book in PDF and EPUB Free Download. You can read online Higher Order Asymptotic Theory For Nonparametric Time Series Analysis And Related Contributions and write the review.

This festschrift is dedicated to Professor Howell Tong on the occasion of his 65th birthday. With a Foreword written by Professor Peter Whittle, FRS, it celebrates Tong's path-breaking and tireless contributions to nonlinear time series analysis, chaos and statistics, by reprinting 10 selected papers by him and his collaborators, which are interleaved with 17 original reviews, written by 19 international experts.Through these papers and reviews, readers will have an opportunity to share many of the excitements, retrospectively and prospectively, of the relatively new subject of nonlinear time series. Tong has played a leading role in laying the foundation of the subject; his innovative and authoritative contributions are reflected in the review articles in the volume, which describe modern and related developments in the subject, including applications in many major fields such as ecology, economics, finance and others. This volume will be useful to researchers and students interested in the theory and practice of nonlinear time series analysis.
Many processes in nature arise from the interaction of periodic phenomena with random phenomena. The results are processes that are not periodic, but whose statistical functions are periodic functions of time. These processes are called cyclostationary and are an appropriate mathematical model for signals encountered in many fields including communications, radar, sonar, telemetry, acoustics, mechanics, econometrics, astronomy, and biology. Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations addresses these issues and includes the following key features. - Presents the foundations and developments of the second- and higher-order theory of cyclostationary signals - Performs signal analysis using both the classical stochastic process approach and the functional approach for time series - Provides applications in signal detection and estimation, filtering, parameter estimation, source location, modulation format classification, and biological signal characterization - Includes algorithms for cyclic spectral analysis along with Matlab/Octave code - Provides generalizations of the classical cyclostationary model in order to account for relative motion between transmitter and receiver and describe irregular statistical cyclicity in the data
The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.
This book integrates the fundamentals of asymptotic theory of statistical inference for time series under nonstandard settings, e.g., infinite variance processes, not only from the point of view of efficiency but also from that of robustness and optimality by minimizing prediction error. This is the first book to consider the generalized empirical likelihood applied to time series models in frequency domain and also the estimation motivated by minimizing quantile prediction error without assumption of true model. It provides the reader with a new horizon for understanding the prediction problem that occurs in time series modeling and a contemporary approach of hypothesis testing by the generalized empirical likelihood method. Nonparametric aspects of the methods proposed in this book also satisfactorily address economic and financial problems without imposing redundantly strong restrictions on the model, which has been true until now. Dealing with infinite variance processes makes analysis of economic and financial data more accurate under the existing results from the demonstrative research. The scope of applications, however, is expected to apply to much broader academic fields. The methods are also sufficiently flexible in that they represent an advanced and unified development of prediction form including multiple-point extrapolation, interpolation, and other incomplete past forecastings. Consequently, they lead readers to a good combination of efficient and robust estimate and test, and discriminate pivotal quantities contained in realistic time series models.
The past few years have witnessed dramatic advances in computational methods for Bayesian inference. As a result, Bayesian approaches to solving a wide variety of problems in data analysis and decision-making have become feasible, and there is currently a growth spurt in the application of Bayesian methods. The purpose of this volume is to present several detailed examples of applications of Bayesian thinking, with an emphasis on the scientific or technological context of the problem being solved. The papers collected here were presented and discussed at a Workshop held at Carnegie-Mellon University, September 29 through October 1, 1991. There are five ma jor articles, each with two discussion pieces and a reply. These articles were invited by us following a public solicitation of abstracts. The problems they address are diverse, but all bear on policy decision-making. Though not part of our original design for the Workshop, that commonality of theme does emphasize the usefulness of Bayesian meth ods in this arena. Along with the invited papers were several additional commentaries of a general nature; the first comment was invited and the remainder grew out of the discussion at the Workshop. In addition there are nine contributed papers, selected from the thirty-four presented at the Workshop, on a variety of applications. This collection of case studies illustrates the ways in which Bayesian methods are being incorporated into statistical practice. The strengths (and limitations) of the approach become apparent through the examples.
This volume presents the published Proceedings of the joint meeting of GUM92 and the 7th International Workshop on Statistical Modelling, held in Munich, Germany from 13 to 17 July 1992. The meeting aimed to bring together researchers interested in the development and applications of generalized linear modelling in GUM and those interested in statistical modelling in its widest sense. This joint meeting built upon the success of previous workshops and GUM conferences. Previous GUM conferences were held in London and Lancaster, and a joint GUM Conference/4th Modelling Workshop was held in Trento. (The Proceedings of previous GUM conferences/Statistical Modelling Workshops are available as numbers 14 , 32 and 57 of the Springer Verlag series of Lecture Notes in Statistics). Workshops have been organized in Innsbruck, Perugia, Vienna, Toulouse and Utrecht. (Proceedings of the Toulouse Workshop appear as numbers 3 and 4 of volume 13 of the journal Computational Statistics and Data Analysis). Much statistical modelling is carried out using GUM, as is apparent from many of the papers in these Proceedings. Thus the Programme Committee were also keen on encouraging papers which addressed problems which are not only of practical importance but which are also relevant to GUM or other software development. The Programme Committee requested both theoretical and applied papers. Thus there are papers in a wide range of practical areas, such as ecology, breast cancer remission and diabetes mortality, banking and insurance, quality control, social mobility, organizational behaviour.
Learning from experience, making decisions on the basis of the available information, and proceeding step by step to a desired goal are fundamental behavioural qualities of human beings. Nevertheless, it was not until the early 1940's that such a statistical theory - namely Sequential Analysis - was created, which allows us to investigate this kind of behaviour in a precise manner. A. Wald's famous sequential probability ratio test (SPRT; see example (1.8» turned out to have an enormous influence on the development of this theory. On the one hand, Wald's fundamental monograph "Sequential Analysis" ([Wa]*) is essentially centered around this test. On the other hand, important properties of the SPRT - e.g. Bayes optimality, minimax-properties, "uniform" optimality with respect to expected sample sizes - gave rise to the development of a general statistical decision theory. As a conse quence, the SPRT's played a dominating role in the further development of sequential analysis and, more generally, in theoretical statistics.
Generalized Gamma convolutions were introduced by Olof Thorin in 1977 and were used by him to show that, in particular, the Lognormal distribution is infinitely divisible. After that a large number of papers rapidly appeared with new results in a somewhat random order. Many of the papers appeared in the Scandinavian Actuarial Journal. This work is an attempt to present the main results on this class of probability distributions and related classes in a rather logical order. The goal has been to be on a level that is not too advanced. However, since the field is rather technical, most readers will find difficult passages in the text. Those who do not want to visit a mysterious land situated between the land of probability theory and statistics and the land of classical analysis should not look at this work. When some years ago I submitted a survey to a journal it was suggested by the editor, K. Krickeberg, that it should be expanded to a book. However, at that time I was rather reluctant to do so since there remained so many problems to be solved or to be solved in a smoother way than before. Moreover, there was at that time some lack of probabilistic interpretations and applications. Many of the problems are now solved but still it is felt that more applications than those presented in the work could be found.
Because of the sheer size and scope of the plastics industry, the title Developments in Plastics Technology now covers an incredibly wide range of subjects or topics. No single volume can survey the whole field in any depth and what follows is, therefore, a series of chapters on selected topics. The topics were selected by us, the editors, because of their immediate relevance to the plastics industry. When one considers the advancements of the plastics processing machinery (in terms of its speed of operation and conciseness of control), it was felt that several chapters should be included which related to the types of control systems used and the correct usage of hydraulics. The importance of using cellular, rubber-modified and engineering-type plastics has had a major impact on the plastics industry and therefore a chapter on each of these subjects has been included. The two remaining chapters are on the characterisation and behaviour of polymer structures, both subjects again being of current academic or industrial interest. Each of the contributions was written by a specialist in that field and to them all, we, the editors, extend our heartfelt thanks, as writing a contribution for a book such as this, while doing a full-time job, is no easy task.