Download Free High Speed Pulse Technology Sparks And Laser Pulses Book in PDF and EPUB Free Download. You can read online High Speed Pulse Technology Sparks And Laser Pulses and write the review.

High Speed Pulse Technology, Volume IV: Sparks and Laser Pulses covers the production and practical aspects of sparks and laser pulses for the generation and utilization of high speed pulsed of energy in different forms. This volume consists of seven chapters and begins with reviews of the classification of photographic methods of high-speed analysis, specifically the motion analysis of rapid events by white light pulses. The next chapters examine the sources of white pulse light and nanosecond radiation. The remaining chapters discuss the applications of the technology in photography, photolysis, laser pumping, and visualization of flows, cracks, and particles. This book will prove useful to physicists, electrical and other engineering fields, teachers, and students who are interested in sparks and laser pulses.
Schlieren and shadowgraph techniques are basic and valuable tools in various scientific and engineering disciplines. They allow us to see the invisible: the optical inhomogeneities in transparent media like air, water, and glass that otherwise cause only ghostly distortions of our normal vision. These techniques are discussed briefly in many books and papers, but there is no up-to-date complete treatment of the subject before now. The book is intended as a practical guide for those who want to use these methods, as well as a resource for a broad range of disciplines where scientific visualization is important. The colorful 400-year history of these methods is covered in an extensive introductory chapter accessible to all readers.
Mesyats' Pulsed Power provides in-depth coverage of the generation of pulsed electric power, electron and ion beams, and various types of pulsed electromagnetic radiation. The electric power that can be produced by the methods described ranges from 106 to 1014W for pulse durations of 10-10-10-7s. The book consists of nine parts containing 28 chapters, which deal with various aspects of pulsed power and high-power electronics and cover a concise theory of electric circuits as applied to nanosecond pulse technology; physics of fast processes occurring in electrical discharges in vacuum, gases, and liquids; phenomena in long lines; mechanisms of operation and designs of high-power gas-discharge, plasma, and semiconductor closing and opening switches as well as of high-power electric pulse generators using these switches; solid-state (semiconductor and magnetic) methods of production and transformation of nanosecond high-power pulses; and methods of production of high-power pulsed electron and ion beams. The closing part describes methods applied to produce high-power nanosecond pulsed X-rays, laser beams, microwaves, and ultrawideband electromagnetic radiation. This all-embracing book covers gas, laser, semiconductor, and magnetic circuit elements, the phenomenon of explosive electron emission discovered by the author, diodes of various types, including semiconductor diodes based on the SOS effect discovered with participation of the author, and methods of production of various types of high-power pulsed radiation.
Pulsed power technology, in the simplest of terms, usually concerns the storage of electrical energy over relatively long times and then its rapid release over a comparatively short period. However, if we leave the definition at that, we miss a multitude of aspects that are important in the ultimate application of pulsed power. It is, in fact, the application of pulsed power technology to which this series of texts will be focused. Pulsed power in today's broader sense means "special power" as opposed to the tra ditional situation of high voltage impulse issues related to the utility industry. Since the pulsed power field is primarily application driven, it has principally an engineering flavor. Today' s applications span those from materials processing, such as metal forming by pulsed magnetic fields, to other varied applications, such as psy chedelic strobe lights or radar modulators. Very high peak power applications occur in research for inertial confinement fusion, the Strategic Defense Initiative and other historical defense uses. lri fact it is from this latter direction that pulsed power has real ized explosive growth over the past half century. Early thrusts were in electrically powered systems that simulated the environment or effects of nuclear weapons detonation. More recently it is being utilized as prime power sources for directed energy weapons, such as lasers, microwaves, particle beam weapons, and even mass drivers (kinetic energy weapons).