Download Free High Spatial Resolution Magnetic Resonance Imaging And Magnetic Resonance Spectroscopic Imaging Book in PDF and EPUB Free Download. You can read online High Spatial Resolution Magnetic Resonance Imaging And Magnetic Resonance Spectroscopic Imaging and write the review.

The applications of nuclear magnetic resonance (NMR) to petroleum exploration and production have become more and more important in recent years. The development of the NMR logging technology and the NMR applications to core analysis and formation evaluation have been very rapid and extensive.The scope of this book covers a wide range of NMR related petrophysical measurements on cores including brief descriptions of recent applications of Magic Angle Spinning (MAS) NMR and the basics of NMR imaging of cores. In the discussion of NMR logging applications various schemes of using NMR logs to obtain necessary information for formation evaluation are outlined, such as irreducible water saturation determination, hydrocarbon typing, oil viscosity estimation, and permeability prediction. The principles of these applications are discussed using schematic diagrams for illustration.A unique aspect of the book is that it provides a detailed account of the basic principles of spin diffusion and relaxation in porous media. Another important area that is covered is the inversion of NMR data into a distribution of amplitudes associated with relaxation time which provides the basic information needed to interpret the NMR measurements obtained from logging.
Presents basic concepts, experimental methodology and data acquisition, and processing standards of in vivo NMR spectroscopy This book covers, in detail, the technical and biophysical aspects of in vivo NMR techniques and includes novel developments in the field such as hyperpolarized NMR, dynamic 13C NMR, automated shimming, and parallel acquisitions. Most of the techniques are described from an educational point of view, yet it still retains the practical aspects appreciated by experimental NMR spectroscopists. In addition, each chapter concludes with a number of exercises designed to review, and often extend, the presented NMR principles and techniques. The third edition of In Vivo NMR Spectroscopy: Principles and Techniques has been updated to include experimental detail on the developing area of hyperpolarization; a description of the semi-LASER sequence, which is now a method of choice; updated chemical shift data, including the addition of 31P data; a troubleshooting section on common problems related to shimming, water suppression, and quantification; recent developments in data acquisition and processing standards; and MatLab scripts on the accompanying website for helping readers calculate radiofrequency pulses. Provide an educational explanation and overview of in vivo NMR, while maintaining the practical aspects appreciated by experimental NMR spectroscopists Features more experimental methodology than the previous edition End-of-chapter exercises that help drive home the principles and techniques and offer a more in-depth exploration of quantitative MR equations Designed to be used in conjunction with a teaching course on the subject In Vivo NMR Spectroscopy: Principles and Techniques, 3rd Edition is aimed at all those involved in fundamental and/or diagnostic in vivo NMR, ranging from people working in dedicated in vivo NMR institutes, to radiologists in hospitals, researchers in high-resolution NMR and MRI, and in areas such as neurology, physiology, chemistry, and medical biology.
Describes the most common imaging technologies and their diagnostic applications so that pharmacists and other health professionals, as well as imaging researchers, can understand and interpret medical imaging science This book guides pharmacists and other health professionals and researchers to understand and interpret medical imaging. Divided into two sections, it covers both fundamental principles and clinical applications. It describes the most common imaging technologies and their use to diagnose diseases. In addition, the authors introduce the emerging role of molecular imaging including PET in the diagnosis of cancer and to assess the effectiveness of cancer treatments. The book features many illustrations and discusses many patient case examples. Medical Imaging for Health Professionals: Technologies and Clinical Applications offers in-depth chapters explaining the basic principles of: X-Ray, CT, and Mammography Technology; Nuclear Medicine Imaging Technology; Radionuclide Production and Radiopharmaceuticals; Magnetic Resonance Imaging (MRI) Technology; and Ultrasound Imaging Technology. It also provides chapters written by expert radiologists in well-explained terminology discussing clinical applications including: Cardiac Imaging; Lung Imaging; Breast Imaging; Endocrine Gland Imaging; Abdominal Imaging; Genitourinary Tract Imaging; Imaging of the Head, Neck, Spine and Brain; Musculoskeletal Imaging; and Molecular Imaging with Positron Emission Tomography (PET). Teaches pharmacists, health professionals, and researchers the basics of medical imaging technology Introduces all of the customary imaging tools—X-ray, CT, ultrasound, MRI, SPECT, and PET—and describes their diagnostic applications Explains how molecular imaging aids in cancer diagnosis and in assessing the effectiveness of cancer treatments Includes many case examples of imaging applications for diagnosing common diseases Medical Imaging for Health Professionals: Technologies and Clinical Applications is an important resource for pharmacists, nurses, physiotherapists, respiratory therapists, occupational therapists, radiological or nuclear medicine technologists, health physicists, radiotherapists, as well as researchers in the imaging field.
Magnetic Resonance Spectroscopy: Tools for Neuroscience Research and Emerging Clinical Applications is the first comprehensive book for non-physicists that addresses the emerging and exciting technique of magnetic resonance spectroscopy. Divided into three sections, this book provides coverage of the key areas of concern for researchers. The first, on how MRS is acquired, provides a comprehensive overview of the techniques, analysis, and pitfalls encountered in MRS; the second, on what can be seen by MRS, provides essential background physiology and biochemistry on the major metabolites studied; the final sections, on why MRS is used, constitutes a detailed guide to the major clinical and scientific uses of MRS, the current state of teh art, and recent innovations. Magnetic Resonance Spectroscopy will become the essential guide for people new to the technique and give those more familiar with MRS a new perspective. - Chapters written by world-leading experts in the field - Fully illustrated - Covers both proton and non-proton MRS - Includes the background to novel MRS imaging approaches
Medical Imaging Technology reveals the physical and materials principles of medical imaging and image processing, from how images are obtained to how they are used. It covers all aspects of image formation in modern imaging modalities and addresses the techniques, instrumentation, and advanced materials used in this rapidly changing field. Covering conventional and modern medical imaging techniques, this book encompasses radiography, fluoroscopy, computed tomography, magnetic resonance imaging, ultrasound, and Raman spectroscopy in medicine. In addition to the physical principles of imaging techniques, the book also familiarizes you with the equipment and procedures used in diagnostic imaging. - Addresses the techniques, instrumentation, and advanced materials used in medical imaging - Provides practical insight into the skills, tools, and procedures used in diagnostic imaging - Focuses on selenium imagers and chalcogenide glasses
Designed in a small-format for practical reading and point-of-care setting use, this work presents the most up-to-date concepts on breast diseases. The main objective of this book is to propagate current knowledge of the most frequent breast diseases, being a quick reference, evidence-based manual covering the major clinical scenarios in mastology. The essence of the work can be summarized in the following sentence: "access to maximum content in the least amount of time.” The book contains data that will allow readers to understand and treat patients with different complaints and diseases. Each chapter presents a flow chart and a summary of the five major publications on the subject. This is unique in comparison with other books in this medical specialty. Developed by a team of international expert specialists who deal with breast pathologies on a daily basis, the book also includes additional contributions from experienced, renowned professionals in interdisciplinary specialties related to the main area. This book will be of interest to physicians who deal with breast diseases and wish to improve their knowledge through exposure to state-of-the-art data and best practices advice. It is also directed to medical students and residents in training within mastology. (This title was originally published in Portuguese by the Brazilian publisher Atheneu in 2011 and has sold very well and gone into a third edition, published in 2017. The Editors have all English language rights, detailed in the attached contract, although it is in Portuguese).
As a truly translational area of biomedical investigation, epilepsy research spans an extraordinary breadth of subjects and involves virtually every tool that modern neuroscience has at its disposal. The Encyclopedia of Basic Epilepsy Research provides an up to date, comprehensive reference for all epilepsy researchers. With an expert list of authors, the encyclopedia covers the full spectrum of research activities from genes and molecules to animal models and human patients. The encyclopedia's electronic format also provides unparalleled access to frequent updates and additions, while the limited edition print version provides another option for owning this content. The Encyclopedia of Basic Epilepsy Research is an essential resource for researchers of all levels and clinicians who study epilepsy. The only comprehensive reference for basic research and current activities in epilepsy Electronic format provides fast and easy access to updates and additions, with limited print version available as well Contains over 85 articles, all written by experts in epilepsy research
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.