Download Free High Rise Building Structures Book in PDF and EPUB Free Download. You can read online High Rise Building Structures and write the review.

The first of its kind, Designing Tall Buildings is an accessible reference that guides you through the fundamental principles of designing high-rises. Each chapter focuses on one theme central to tall-building design, giving you a comprehensive overview of the related architecture and structural engineering concepts. Mark P. Sarkisian provides clear definitions of technical terms and introduces important equations, to help you gradually develop your knowledge. Later chapters allow you to explore more complex applications, such as biomimicry. Projects drawn from Skidmore, Owings and Merrill’s vast catalog of built high-rises, many of which Sarkisian designed, demonstrate these concepts. This book advises you to consider the influence of a particular site’s geology, wind conditions, and seismicity. Using this contextual knowledge and analysis, you can determine what types of structural solutions are best suited for a tower on that site. You can then conceptualize and devise efficient structural systems that are not only safe, but also constructible and economical. Sarkisian also addresses the influence of nature in design, urging you to integrate structure and architecture for buildings of superior performance, sustainability, and aesthetic excellence.
The book deals with the geotechnical analysis and design of foundation systems for high-rise buildings and other complex structures with a distinctive soil-structure interaction. The basics of the analysis of stability and serviceability, necessary soil investigations, important technical regulations and quality and safety assurance are explained and possibilities for optimised foundation systems are given. Additionally, special aspects of foundation systems such as geothermal activated foundation systems and the reuse of existing foundations are described and illustrated by examples from engineering practice.
Examines structural aspects of high rise buildings, particularly fundamental approaches to the analysis of the behavior of different forms of building structures including frame, shear wall, tubular, core and outrigger-braced systems. Introductory chapters discuss the forces to which the structure is subjected, design criteria which are of the greatest relevance to tall buildings, and various structural forms which have developed over the years since the first skyscrapers were built at the turn of the century. A major chapter is devoted to the modeling of real structures for both preliminary and final analyses. Considerable attention is devoted to the assessment of the stability of the structure, and the significance of creep and shrinkage is discussed. A final chapter is devoted to the dynamic response of structures subjected to wind and earthquake forces. Includes both accurate computer-based and approximate methods of analysis.
Interest continues to develop in the design and construction of high-rise towers and tall buildings, structures with heights ranging from 75m to 500m and even more. This volume presents the papers from the third in a series of international conferences on the subject, organised by the International Federation of High-rise Structures. The papers hav
This is a guide to both the basics and the details of tall building design, delving into the rudimentary aspects of design that an architect of a tall office building must consider, as well as looking at the rationale for why and how a building must be built the way it is. Liberally illustrated with clear, simple black and white illustrations showing how the building structure and details can be built, this book greatly assists the reader in their understanding of the building process for a modern office tower. It breaks down the building into three main components: the structure, the core and the facade, writing about them and illustrating them in a simple-to-understand manner. By focusing on the nuts and bolts of real-life design and construction, it provides a practical guide and desk-reference to any architect or architecture student embarking on a tall building project.
Outrigger systems are rigid horizontal structures designed to improve a building’s stability and strength by connecting the building core or spine to distant columns, much in the way an outrigger can prevent a canoe from overturning. Outriggers have been used in tall, narrow buildings for nearly 500 years, but the basic design principle dates back centuries. In the 1980s, as buildings grew taller and more ambitious, outrigger systems eclipsed tubular frames as the most popular structural approach for supertall buildings. Designers embraced properly proportioned core-and-outrigger schemes as a method to offer far more perimeter flexibility and openness for tall buildings than the perimeter moment or braced frames and bundled tubes that preceded them. However, the outrigger system is not listed as a seismic lateral load-resisting system in any code, and design parameters are not available, despite the increasingly frequent use of the concept. The Council on Tall Buildings and Urban Habitat’s Outrigger Working Group has addressed the pressing need for design guidelines for outrigger systems with this guide, a comprehensive overview of the use of outriggers in skyscrapers. This guide offers detailed recommendations for analysis of outriggers within the lateral load-resisting systems of tall buildings, for recognizing and addressing effects on building behavior and for practical design solutions. It also highlights concerns specific to the outrigger structural system such as differential column shortening and construction sequence impacts. Several project examples are explored in depth, illustrating the role of outrigger systems in tall building designs and providing ideas for future projects. The guide details the impact of outrigger systems on tall building designs, and demonstrates ways in which the technology is continuously advancing to improve the efficiency and stability of tall buildings around the world.
What constitutes a high-rise building? A high-rise is, in fact, any building with more than 9 storeys and not just those striking skyscrapers which shape modern city skylines. In the past architects who designed such structures used to be the exception but in the last 10 years more and more architectural offices have begun to focus on this type of building. However, the sheer complexity of designing and planning the construction of a high-rise as opposed to other building types requires a wealth of specialized experience and expertise. The High-Rise Manual is the first comprehensive reference work on this subject. All relevant aspects of such an undertaking are examined in detail by some 24 specialist authors. Each step is extensively documented including the initial project planning, the building organisation, the laying of the foundations, the supporting structure, the building technology, the office design, and the Facility Management. Theoretical contributions present the basic principles of select
As software skills rise to the forefront of design concerns, the art of structural conceptualization is often minimized. Structural engineering, however, requires the marriage of artistic and intuitive designs with mathematical accuracy and detail. Computer analysis works to solidify and extend the creative idea or concept that might have started o
The design of tall buildings and complex structures involves challenging activities, including: scheme design, modelling, structural analysis and detailed design. This book provides structural designers with a systematic approach to anticipate and solve issues for tall buildings and complex structures. This book begins with a clear and rigorous exposition of theories behind designing tall buildings. After this is an explanation of basic issues encountered in the design process. This is followed by chapters concerning the design and analysis of tall building with different lateral stability systems, such as MRF, shear wall, core, outrigger, bracing, tube system, diagrid system and mega frame. The final three chapters explain the design principles and analysis methods for complex and special structures. With this book, researchers and designers will find a valuable reference on topics such as tall building systems, structure with complex geometry, Tensegrity structures, membrane structures and offshore structures. - Numerous worked-through examples of existing prestigious projects around the world (such as Jeddah Tower, Shanghai Tower, and Petronas Tower etc.) are provided to assist the reader's understanding of the topic - Provides the latest modelling methods in design such as BIM and Parametric Modelling technique - Detailed explanations of widely used programs in current design practice, such as SAP2000, ETABS, ANSYS, and Rhino - Modelling case studies for all types of tall buildings and complex structures, such as: Buttressed Core system, diagrid system, Tube system, Tensile structures and offshore structures etc.