Download Free High Reliability Autonomous Management Systems For Spacecraft Book in PDF and EPUB Free Download. You can read online High Reliability Autonomous Management Systems For Spacecraft and write the review.

This book examines the autonomous management of spacecraft, which uses modern control technologies such as artificial intelligence to establish a remote intelligent body on the spacecraft so that the spacecraft can complete its flight tasks by itself. Its goal is to accurately perceive its own state and external environment without relying on external information injection and control, or rely on external control as little as possible, make various appropriate decisions based on this information and user tasks, and be able to autonomously control spacecraft to complete various tasks. - Divides the autonomous management level of spacecraft into two levels: - Basic autonomy to meet spacecraft health requirements, namely, autonomous health management, and autonomy of the advanced stage. - Divides the implementation of spacecraft autonomous management into three aspects: - Autonomous health management of spacecraft – the spacecraft can monitor and sense its own state and can autonomously detect, isolate, and recover from faults. - Autonomous mission management – the spacecraft can directly receive the mission, formulate a reasonable plan according to the current state and working environment of the spacecraft, and convert the mission into a specific sequence of instructions. - Spacecraft autonomous data management – the spacecraft processes a large amount of raw data and extracts useful information and autonomously executes or changes flight tasks. - The autonomous management model of the spacecraft is divided into two points: - Compatibility – the existing traditional control systems belong to the execution layer logic and are compatible with the existing systems. - Scalability – it adopts a layered structure, and each layer has different autonomous capabilities.
This edited book covers space robotics and autonomous systems (space RAS) from technologies to advances and applications including sensing and perception, mobility, manipulations, high-level autonomy, human-robot interaction, multi-modal interaction, modelling and simulation, and safety and trust.
This book establishes the foundations needed to realize the ultimate goals for artificial intelligence, such as autonomy and trustworthiness. Aimed at scientists, researchers, technologists, practitioners, and students, it brings together contributions offering the basics, the challenges and the state-of-the-art on trusted autonomous systems in a single volume. The book is structured in three parts, with chapters written by eminent researchers and outstanding practitioners and users in the field. The first part covers foundational artificial intelligence technologies, while the second part covers philosophical, practical and technological perspectives on trust. Lastly, the third part presents advanced topics necessary to create future trusted autonomous systems. The book augments theory with real-world applications including cyber security, defence and space.
In the early 1990s, NASA Goddard Space Flight Center started researching and developing autonomous and autonomic ground and spacecraft control systems for future NASA missions. This research started by experimenting with and developing expert systems to automate ground station software and reduce the number of people needed to control a spacecraft. This was followed by research into agent-based technology to develop autonomous ground c- trol and spacecraft. Research into this area has now evolved into using the concepts of autonomic systems to make future space missions self-managing and giving them a high degree of survivability in the harsh environments in which they operate. This book describes much of the results of this research. In addition, it aimstodiscusstheneededsoftwaretomakefutureNASAspacemissionsmore completelyautonomousandautonomic.Thecoreofthesoftwareforthesenew missions has been written for other applications or is being applied gradually in current missions, or is in current development. It is intended that this book should document how NASA missions are becoming more autonomous and autonomic and should point to the way of making future missions highly - tonomous and autonomic. What is not covered is the supporting hardware of these missions or the intricate software that implements orbit and at- tude determination, on-board resource allocation, or planning and scheduling (though we refer to these technologies and give references for the interested reader).
This book provides systematic descriptions of design methods, typical techniques, and validation methods for lunar soft landers, covering their environmental design, system design, sub-system design, assembly, testing and ground test validation based on the Chang’e-3 mission. Offering readers a comprehensive, systematic and in-depth introduction to the technologies used in China’s lunar soft landers, it presents detailed information on the design process for Chang’e-3, including methods and techniques that will be invaluable in future extraterrestrial soft lander design. As such, the book offers a unique reference guide for all researchers and professionals working on deep-space missions around the globe.
The current healthcare system faces complications including data acquisition, interpretation, and delivery challenges, particularly in out-of-hospital scenarios. The shortage of medical resources intensifies the demand for efficient information gathering and processing. Moreover, the potential of pervasive computing still needs to be explored in healthcare, limiting the industry's ability to leverage innovations like artificial intelligence, augmented reality, and virtual reality. Ubiquitous Computing and Technological Innovation for Universal Healthcare addresses the medical field's critical challenges. It presents innovative solutions grounded in the marriage of Unmanned Aerial Vehicles (UAV), pervasive computing, and metaverse intelligence. It outlines how these UAVs redefine out-of-hospital care, addressing the pressing need for efficient data collection and interpretation amid a global medical shortage. Integrating cognitive algorithms is explored to automate diagnosis and enhance healthcare systems' emergency responsiveness. The book revolves around developing and integrating treatment programs leveraging UAV communication. Topics such as artificial intelligence, telemedicine, blockchain, digital twins, augmented reality, and virtual reality are delved into for their role in creating intelligent healthcare systems. The focus on rapid identification of underlying health issues, real-time monitoring in the metaverse, and the economic, social, and environmental impact of these systems adds depth to the discourse. Structured as a vital resource for researchers, academicians, industry professionals, policy-makers, and system designers, this book bridges the gap between theory and application.
This book offers readers essential insights into system design for deep space probes and describes key aspects such as system design, orbit design, telecommunication, GNC, thermal control, propulsion, aerobraking and scientific payload. Each chapter includes the basic principles, requirements analysis, procedures, equations and diagrams, as well as practical examples that will help readers to understand the research on each technology and the major concerns when it comes to developing deep space probes. An excellent reference resource for researchers and engineers interested in deep space exploration, it can also serve as a textbook for university students and those at institutes involved in aerospace.
INTELLIGENT SATELLITE DESIGN AND IMPLEMENTATION Integrate cutting-edge technology into spacecraft design with this groundbreaking work Artificial intelligence and machine learning have revolutionized virtually every area of computing and complex engineering, and the design of satellite spacecraft is no exception. Intelligent satellites are increasingly capable of human-like perception, decision-making, and operations, and their problem-solving capacities are still expanding. As AI and machine learning continue to advance, their integration into satellite manufacture will only deepen. Intelligent Satellite Design and Implementation seeks to understand the foundations of this integration and its likely directions in the coming years. Beginning from the basic principles of interaction between artificial intelligence and satellite design and mission planning, the book analyzes a series of current or potential areas of technological advancement to create a comprehensive overview of the subject. Intelligent Satellite Design and Implementation readers will also find: Background information on the introduction and development of artificial intelligence Detailed discussion of topics including autonomous satellite operation, remote sensing satellites, and many more Over 100 illustrations and tables to reinforce key concepts Intelligent Satellite Design and Implementation is ideal for graduate students and advanced undergraduates in engineering, computing, and spacecraft design programs, as well as researchers in these and related fields.
This book constitutes the refereed conference proceedings of the 11th International Conference on Mobile Wireless Middleware, Operating Systems and Applications, MOBILWARE 2022, via Virtual Event on 28-29, 2022 Due to COVID-19 pandemic the conference was held virtually. The 23 revised full papers were reviewed and selected from 59 submissions and are organized in tracks on Middleware, Wireless, and Future Networks; Integrated Satellite-Terrestrial Information Network; and Integrated Satellite-Terrestrial Intelligent Information Processing, Decision and Planning.
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircrafts. It covers a wide range of topics, including but not limited to, intelligent computing communication and control; new methods of navigation, estimation and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation and control of miniature aircraft; and sensor systems for guidance, navigation and control etc. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.