Download Free High Power Lasers In Manufacturing Book in PDF and EPUB Free Download. You can read online High Power Lasers In Manufacturing and write the review.

The Laser world consists basically of two areas, which are necessary and in many cases also sufficient for effective innovation: The right laser for the right application. For the individual application that means the determination of optimized process parameters in terms of laser power, peak power/ intensity, focus geometry and dimension, pulse length, pulse repetition rate and wavelength to name only the six most important ones. Once these parameters are identified, the corresponding Laser has to be selected on the basis of commercial availability. Obviously there is no such thing than "One Laser for all". The situation is rather comparable with electrical power, were depending on the demand of the application in terms of voltage, current and time corresponding power supplies need to be tailored, however, with the difference that in the case of the Laser the variety of parameters is even higher, thus the technology is more complex but on the other hand much more flexible in terms optimizing the source to the application. As a consequence it is suggested to generate two volumes on Lasers and Applications named "Tailored Light".
This book summarizes a five year research project, as well as subsequent results regarding high power diode laser systems and their application in materials processing. The text explores the entire chain of technology, from the semiconductor technology, through cooling mounting and assembly, beam shaping and system technology, to applications in the processing of such materials as metals and polymers. Includes theoretical models, a range of important parameters and practical tips.
High power lasers of either the gas or solid state type can be used to generate a focal spot with a diameter of about a tenth of a millimetre and a power density of up to 100 Mio W/cm2. With these intensities all materials can be heated up rapidly, leading to fast melting, violent evaporation or even plasma formation. So laser beams can be utilized for various processing tasks, such as transformation hardening, cutting and ablation or welding and cladding or even rapid prototyping. With these processes, important advantages are achieved compared to conventional tools such as high processing speed due to the high concentration of energy and high quality of the processed workpiece without deformations due to the small overall heat input to the workpiece that corresponds to the small spot diameter. All these advantages finally result in strongly reduced production costs, which is the main reason for a world-wide substitution of conventional processes and other beam tools by laser technology.This monograph offers a great insight into the operation principles of high power laser sources, the phenomena of interaction of laser beams and materials and the mechanisms of the various production processes with lasers ? thus enabling production engineers and others to make optimum use of the benefits of laser technology and to understand the technical properties and the physical limitations of this most recent technology (especially in comparison to conventional tools and other beam tools), and providing a sufficient basis for the understanding and use of future developments in this area.
A selection of papers that examine various aspects of high-power lasers in manufacturing.
The State of the Art in High-Power Laser Technology Filled with full-color images, High-Power Laser Handbook offers comprehensive details on the latest advances in high-power laser development and applications. Performance parameters for each major class of lasers are described. The book covers high-power gas, chemical, and free-electron lasers and then discusses semiconductor diode lasers, along with the associated technologies of packaging, reliability, and beam shaping and delivery. Current research and development in solid-state lasers is described as well as scaling approaches for high CW powers, high pulse energies, and high peak powers. This authoritative work also addresses the emergence of fiber lasers and concludes by reviewing various methods for beam combining. Coverage Includes: Carbon dioxide lasers Excimer lasers Chemical lasers High-power free-electron lasers Semiconductor laser diodes High-power diode laser arrays Introduction to high-power solid-state lasers Zig-zag slab lasers ThinZag high-power laser development Thin disk lasers Heat capacity lasers Ultrafast solid-state lasers Ultrafast lasers in the thin disk geometry The National Ignition Facility laser Optical fiber lasers Pulsed fiber lasers High-power ultrafast fiber laser systems High-power fiber lasers for industry and defense Beam combining
The use of lasers in material processing has become a useful method for transforming industrial materials into finished products. The benefits of laser material processing are vast, including increased precision, high processing speed, and dustless cutting and drilling. Advanced Manufacturing Techniques Using Laser Material Processing explores the latest methodologies for using lasers in materials manufacturing and production, the benefits of using lasers in industrial settings, as well as future outlooks for this technology. This innovative publication is an essential reference source for professionals, researchers, and graduate-level students studying manufacturing technologies and industrial engineering.
High power lasers of either the gas or solid state type can be used to generate a focal spot with a diameter of about a tenth of a millimetre and a power density of up to 100 Mio W/cm2. With these intensities all materials can be heated up rapidly, leading to fast melting, violent evaporation or even plasma formation. So laser beams can be utilized for various processing tasks, such as transformation hardening, cutting and ablation or welding and cladding or even rapid prototyping. With these processes, important advantages are achieved compared to conventional tools such as high processing speed due to the high concentration of energy and high quality of the processed workpiece without deformations due to the small overall heat input to the workpiece that corresponds to the small spot diameter. All these advantages finally result in strongly reduced production costs, which is the main reason for a world-wide substitution of conventional processes and other beam tools by laser technology.This monograph offers a great insight into the operation principles of high power laser sources, the phenomena of interaction of laser beams and materials and the mechanisms of the various production processes with lasers — thus enabling production engineers and others to make optimum use of the benefits of laser technology and to understand the technical properties and the physical limitations of this most recent technology (especially in comparison to conventional tools and other beam tools), and providing a sufficient basis for the understanding and use of future developments in this area.
This book mainly addresses the applications of lasers in the manufacture of various industrial components. The technologies presented here have scopes of application ranging from the macro to meso and micro level of components and features. This book includes chapters on the basic and advanced applications of lasers in the manufacturing domain. They present theoretical and practical aspects of laser technology for various applications such as laser-based machining, micro-scribing, texturing, machining of micro-sized channels; laser welding; laser-based correction of sheet metal, i.e. straightening; laser forming; and laser technology for 3-D printing. Lasers have various applications such as the production of powerful lights for illumination or decoration; measurement of velocity (transportation) and length; interferometry; printing; recording; communication; bio-medical instrumentation and pollution detection. A significant body of literature is available on the physics of lasers and types of lasers. However it has been noted there are a few books published on the “applications of lasers in manufacturing domain,” a gap that this book remedies. Gathering contributions by leading engineers and academicians in this area, it offers a valuable source of information for young scientists and research students.
Effects of High-Power Laser Radiation describes the interactions between high-power laser beams and matter. This book is divided into eight chapters that particularly focus on interactions such as heating, melting, vaporization, and plasma production. The opening chapters examine the laser properties, types, measurement techniques, and safety aspects. The succeeding chapters deal with a variety of physical phenomena and mechanisms of laser-induced particle emission, as well as the initiation and development of gas breakdown phenomena. Other chapters explore the effects and damage of various interactions in transparent materials and on biological systems. The final chapter looks into the practical applications of the various laser effects to diverse technological fields. This book will prove useful to scientists interested in the physical phenomena of laser effects and engineers interested in practical applications of laser effects.
This book gives an in-depth analysis of the physical phenomena of thrust production by laser radiation, as well as laser propulsion engines, and laser-propelled vehicles. It brings together into a unified context accumulated up-to-date information on laser propulsion research, considering propulsion phenomena, laser propulsion techniques, design of vehicles with laser propulsion engines, and high-power laser systems to provide movement for space vehicles. In particular, the reader will find detailed coverage of: designs of laser propulsion engines, operating as both air-breathing and ramjet engines to launch vehicles into LEOs; Assembly of vehicles whereby laser power from a remote laser is collected and directed into a propulsion engine; and, the laser-adaptive systems that control a laser beam to propel vehicles into orbits by delivering laser power through the Earth's atmosphere. This book is essential reading for researchers and professionals involved in laser propulsion.