Download Free Higgs Particles Book in PDF and EPUB Free Download. You can read online Higgs Particles and write the review.

A fascinating tour of particle physics from Nobel Prize winner Leon Lederman. At the root of particle physics is an invincible sense of curiosity. Leon Lederman embraces this spirit of inquiry as he moves from the Greeks' earliest scientific observations to Einstein and beyond to chart this unique arm of scientific study. His survey concludes with the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe, quarks and all--it's the dogged pursuit of this almost mystical entity that inspires Lederman's witty and accessible history.
"The Higgs boson ... is the key to understanding why mass exists and how atoms are possible. After billions of dollars and decades of effort by more than six thousand researchers at the Large Hadron Collider in Switzerland--a doorway is opening into the mind-boggling world of dark matter and beyond. Caltech physicist and acclaimed writer Sean Carroll explains both the importance of the Higgs boson and the ultimately human story behind the greatest scientific achievement of our time"--Publisher
The history of particle physics, the hunt for the most elusive particle, and the fundamental questions the search has inspired How did physicists combine talent and technology to discover the Higgs boson, the last piece in our inventory of the subatomic world? How did the Higgs change our understanding of the universe? And now, nearly a decade after its detection, what comes next? Answering these questions, Ivo van Vulpen—a CERN particle physicist and member of the team behind the detection—invites us on a journey to the frontiers of our knowledge. Enjoy van Vulpen’s accessible explanation of the history of particle physics and of concepts like quantum mechanics and relativity—and ponder his inquiries regarding the search for new particles (to explain dark matter), a new force (to combine the existing fundamental forces), and new phenomena (undiscovered dimensions of space). This is a lively account of work at the world’s highest-energy particle accelerator, with inspiring personal reflections on humanity’s discoveries deeper and deeper into the world of the very small.
The Higgs boson is the rock star of fundamental particles, catapulting CERN, the laboratory where it was found, into the global spotlight. But what is it, why does it matter, and what exactly is CERN? In the late 1940s, a handful of visionaries were working to steer Europe towards a more peaceful future through science, and CERN, the European particle physics laboratory, was duly born. James Gillies tells the gripping story of particle physics, from the original atomists of ancient Greece, through the people who made the crucial breakthroughs, to CERN itself, one of the most ambitious scientific undertakings of our time, and its eventual confirmation of the Higgs boson. Weaving together the scientific and political stories of CERN's development, the book reveals how particle physics has evolved from being the realm of solitary genius to a global field of human endeavour, with CERN's Large Hadron Collider as its frontier research tool.
This book provides a general description of the search for and discovery of the Higgs boson (particle) at CERN’s Large Hadron Collider. The goal is to provide a relatively brief overview of the issues, instruments and techniques relevant for this search; written by a physicist who was directly involved. The Higgs boson mat be the one particle that was studied the most before its discovery and the story from postulation in 1964 to detection in 2012 is a fascinating one. The story is told here while detailing the fundamentals of particle physics.
Relates the history of the search for the Higgs boson, also known as the "God" particle.
The Higgs Boson: Searching for the God Particle by the Editors of Scientific American Updated 2017 Edition! For the fifth anniversary of one of the biggest discoveries in physics, we’ve updated this eBook to include our continuing analysis of the discovery, of the questions it answers and those it raises. As the old adage goes, where there’s smoke, there’s fire. Where there is effect, there must be cause. The planet Neptune was found in 1846 because the mathematics of Newton's laws, when applied to the orbit of Uranus, said some massive body had to be there. Astronomers eventually found it, using the best telescopes available to peer into the sky. This same logic is applied to the search for the Higgs boson. One consequence of the prevailing theory of physics, called the Standard Model, is that there has to be some field that gives particles their particular masses. With that there has to be a corresponding particle, made by creating waves in the field, and this is the Higgs boson, the so-called God particle. This eBook chronicles the search – and demonstrates the power of a good theory. Based on the Standard Model, physicists believed something had to be there, but it wasn't until the Large Hadron Collider was built that anyone could see evidence of the Higgs – and finally in July 2012, they did. A Higgs-like particle was found near the energies scientists expected to find it. Now, armed with better evidence and better questions, the scientific process continues. This eBook gathers the best reporting and analysis from Scientific American to explain that process – the theories, the search, the ongoing questions. In essence, everything you need to know to separate Higgs from hype.
The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.
Two leading physicists discuss the importance of the Higgs Boson, the future of particle physics, and the mysteries of the universe yet to be unraveled. On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars. Starting where Nobel Laureate Leon Lederman's bestseller The God Particle left off, this incisive new book explains what's next. Lederman and Hill discuss key questions that will occupy physicists for years to come:* Why were scientists convinced that something like the "God Particle" had to exist?* What new particles, forces, and laws of physics lie beyond the "God Particle"?* What powerful new accelerators are now needed for the US to recapture a leadership role in science and to reach "beyond the God Particle," such as Fermilab's planned Project-X and the Muon Collider? Using thoughtful, witty, everyday language, the authors show how all of these intriguing questions are leading scientists ever deeper into the fabric of nature. Readers of The God Particle will not want to miss this important sequel.
"The book is a merciless critique of the Large Hadron Collider at CERN and of the theoretical model on which the world's most expensive experiment is based. Unzicker, a German physicist and award-winning science writer, argues that the greatest physicists such as Einstein, Dirac or Schrödinger would have considered the "discovery" of the Higgs particle ridiculous. According to the author, the standard model has grown unbelievably complicated and doesn't solve any of the great riddles of physics. Moreover, with their increasingly intricate techniques, particle physicists are fooling themselves with alleged results, while their convictions are based on group-think and parroting. Altogether, the data analysis cannot be overseen by anybody"--