Download Free Heat Transport And Energetics Of The Earth And Rocky Planets Book in PDF and EPUB Free Download. You can read online Heat Transport And Energetics Of The Earth And Rocky Planets and write the review.

Heat Transport and Energetics of the Earth and Rocky Planets provides a better understanding of the interior of the Earth by addressing the processes related to the motion of heat in large bodies. By addressing issues such as the effect of self-gravitation on the thermal state of the Earth, the effect of length-scales on heat transport, important observations of Earth, and a comparison to the behavior of other rocky bodies, readers will find clearly delineated discussions on the thermal state and evolution of the Earth. Using a combination of fundamentals, new developments and scientific and mathematical principles, the book summarizes the state-of-the-art. This timely reference is an important resource for geophysicists, planetary scientists, geologists, geochemists, and seismologists to gain a better understanding of the interior, formation and evolution of planetary bodies. - Provides an interdisciplinary approach to the understanding of the thermal evolution of large planetary bodies, including contributed chapters from leading experts - Includes relevant observations of Earth and large-scale heat transfer, a critical review of existing paradigms of the current thermal state of the Earth, and a discussion of heat flow on the other rocky planets - Covers macroscopic phenomena as they pertain to deciphering the thermal structure of planetary bodies
This book includes new results of theoretical and experimental studies of various scales of the processes occurring on the earth including the lithosphere, atmosphere, and hydrosphere. Intensive development of research in these areas is due to several factors: 1) the widespread introduction of computer technology, allowing the calculation of complex phenomena; 2) the invention and improvement of a new generation of geophysical instruments such as remote observation systems based on ships, aircraft, and satellites, providing a large amount of data to objectively reflect a broad picture of the processes; and 3) the development of measurement techniques, creating opportunities for controllable and reproducible laboratory data acquisition for generation of new ideas and concepts. Their recent developments have facilitated our research and understanding of these academic fields. The book enriches the understanding of the geophysical processes taking place in various environments (lithosphere, hydrosphere, and atmosphere), including the anthropogenic one, and it further contributes to their development. This book is a valuable resource for specialists working in the oil, gas, and engineering industry to improve their understandings of the field.
Fluid-Solid Interactions in Upstream Oil and Gas Applications, Volume 78 delivers comprehensive understanding of fluid-rock interactions in oil and gas reservoirs and their impact on drilling, production, and reservoir hydrocarbon management. The book is arranged based on intervals of the oil and gas production process and introduces the basics of reservoir fluids and their properties, along with the rheological behavior of solid-fluid systems across all stages of the reservoir, including drilling processes, acidizing, and fracking. The reference then addresses different application-specific issues, such as solid-fluid interactions in tight reservoirs, the applications of nanoparticles, interactions during the EOR processes, and environmental concerns. - Introduces the basics of reservoir fluids and their properties as well as the rheological behavior of solid-fluid systems - Discusses the latest advances in molecular simulations and their reliability - Highlights the environmental concerns regarding the application of fluid-solid systems
"This unusual book, published to honor Warren Bell Hamilton, comprises a diverse, cross-disciplinary collection of bold new ideas in Earth and planetary science. This volume is a rich resource for researchers at all levels looking for interesting, unusual, and off-beat ideas to investigate or set as student projects"--
" ... Concise explanations and descriptions - easily read and readily understood - of what we know of the chain of events and processes that connect the Sun to the Earth, with special emphasis on space weather and Sun-Climate."--Dear Reader.
Questions about the origin and nature of Earth and the life on it have long preoccupied human thought and the scientific endeavor. Deciphering the planet's history and processes could improve the ability to predict catastrophes like earthquakes and volcanic eruptions, to manage Earth's resources, and to anticipate changes in climate and geologic processes. At the request of the U.S. Department of Energy, National Aeronautics and Space Administration, National Science Foundation, and U.S. Geological Survey, the National Research Council assembled a committee to propose and explore grand questions in geological and planetary science. This book captures, in a series of questions, the essential scientific challenges that constitute the frontier of Earth science at the start of the 21st century.
Measurements, Mechanisms, and Models of Heat Transport offers an interdisciplinary approach to the dynamic response of matter to energy input. Using a combination of fundamental principles of physics, recent developments in measuring time-dependent heat conduction, and analytical mathematics, this timely reference summarizes the relative advantages of currently used methods, and remediates flaws in modern models and their historical precursors. Geophysicists, physical chemists, and engineers will find the book to be a valuable resource for its discussions of radiative transfer models and the kinetic theory of gas, amended to account for atomic collisions being inelastic. This book is a prelude to a companion volume on the thermal state, formation, and evolution of planets. Covering both microscopic and mesoscopic phenomena of heat transport, Measurements, Mechanisms, and Models of Heat Transport offers both the fundamental knowledge and up-to-date measurements and models to encourage further improvem - Combines state-of-the-art measurements with core principles to lead to a better understanding of heat conduction and of radiative diffusion, and how these processes are linked - Focuses on macroscopic models of heat transport and the underlying physical principles, providing the tools needed to solve many different problems in heat transport - Connects thermodynamics with behavior of light in revising the kinetic theory of gas, which underlies all models of heat transport, and uses such links to re-derive formulae for blackbody emissions - Explores all states of matter, with an emphasis on crystalline and amorphous solids
In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.
Proceedings of the IAU Symposium No. 40, held in Marfa, Texas, U.S.A., October 26-31, 1969
Physics and Chemistry of the Solar System is a broad survey of the Solar System. The book discusses the general properties and environment of our planetary system, including the astronomical perspective, the general description of the solar system and of the sun and the solar nebula). The text also describes the solar system beyond mars, including the major planets; pluto and the icy satellites of the outer planets; the comets and meteors; and the meteorites and asteroids. The inner solar system, including the airless rocky bodies; mars, venus, and earth; and planets and life about other stars, is also encompassed. Mathematicians, chemists, physicists, geologists, astronomers, meteorologists, and biologists will find the book useful.