Download Free Heat And Mass Transfer During The Melting Process Of A Porous Frost Layer On A Vertical Surface Book in PDF and EPUB Free Download. You can read online Heat And Mass Transfer During The Melting Process Of A Porous Frost Layer On A Vertical Surface and write the review.

This Brief is aimed at engineers and researchers involved in the refrigeration industry: specifically, those interested in energy utilization and system efficiency. The book presents what the authors believe is the first comprehensive frost melting study involving all aspects of heat and mass transfer. The volume’s description of in-plane and normal digital images of frost growth and melting is also unique in the field, and the digital analysis technique offers an advantage over invasive measurement methods. The scope of book’s coverage includes modeling and experimentation for the frost formation and melting processes. The key sub-specialties to which the book are aimed include refrigeration system analysis and design, coupled heat and mass transfer, and phase-change processes.
This SpringerBrief presents a recent advancement in modeling and measurement of the effect of surface wettability on the defrost process. Carefully controlled laboratory measurements of the defrosting of cooled surfaces are used to reveal the effect of surface wetting properties on the extent and speed of frost removal by melting or slumping. The experiments are accompanied by visualization of frost removal at several defrosting conditions. Analysis breaks the defrost process into three stages according to the behavior of the meltwater. Surface wetting factors are included, and become significant when sufficient meltwater accumulates between the saturated frost layer and the surface. The book is aimed at researchers, practicing engineers and graduate students.
This volume of papers has been produced in memory of Professor R.R. Gilpin, who was a pioneer in the field of freezing phenomena in ice-water systems. The subject has applications in ice formation in industrial plants, technologies for manufacturing crystals in space for semiconductors and computer chips and atmospheric physics and geophysics.
Recent developments in the theoretical and practical problems of porous media physics are reviewed in this volume. The main emphasis is on the interdisciplinary nature of transport phenomena in porous media study. State-of-the-art reviews and descriptions of innovative research in progress are reported. A broad spectrum of problems and techniques related to porous media physics is presented. Fundamental questions currently under investigation provide a unifying theme in this volume, helping the reader to understand the problems and research trends in the field. The first part focuses on general problems and techniques. Phenomenological aspects of averaging techniques, the hierarchy of scales that are involved in real porous media and the related scaling problems of multiphase, multicomponent transport phenomena are examined with the emphasis on providing the basic scientific background for a variety of applications. Sometimes, theory comes very close to applications, and occasionally they diverge. This timely treatise demonstrates that both is now the case in porous media physics. This volume will prove an indispensable reference source for all those interested in resolving discrepancies through innovative research work, and inspiring new advances in the field.