Download Free Heart Cell Communication In Health And Disease Book in PDF and EPUB Free Download. You can read online Heart Cell Communication In Health And Disease and write the review.

In Heart Cell Communication in Health and Disease an extensive review of different aspects of heart cell communication is presented. The book starts with the fundamental concept that cardiac cells are communicated, and then proceeds to the role of gap junctions in heart development, the molecular biology of gap junctions, the biophysics of the intercellular channels, the control of junctional conductance and the influence of gap junctions on impulse propagation. This is the first time that a single volume has described cell communication in the normal heart and under different pathological conditions such as heart failure, coronary disease, myocardial ischemia and cardiac arrhythmias. In this way the process of cell communication is analyzed at different levels of complexity, providing the reader with a wide view of this field and its relevance to cardiology.
Since the first gap junction protein (connexin) was cloned over a decade ago, more than a dozen connexin genes have been cloned. Consequently, a wealth of information on the molecular basis of gap junctional communication has been accumulated. This book pays tribute to this exciting era in the history of cell communication research by documenting the great strides made in this field as a result of the merging of biophysics and molecular biology, two of the most powerful approaches to studying the molecular basis of membrane channel behavior. Twenty-eight comprehensive chapters, authored by internationally recognized leaders in the field, discuss the biophysical, physiological, and molecular characteristics of cell-to-cell communication via gap junctions. Key aspects of molecular structure, formation, gating, conductance, and permeability of vertebrate and invertebrate gap junction channels are highlighted. In addition, a number of chapters focus on recent discoveries that implicate connexin mutations and alterations of gap junctional communication in the pathogenesis of several diseases, including the X-linked Charcot Marie Tooth demyelinating disease, some forms of inherited sensorineural deafness, malignant transformation, cardiac malformations and arrhythmia, eye lens cataract, and Chagas' disease.
Mitochondria are subcellular organelles evolved by the endosymbiosis of bacteria with eukaryotic cells. They are the main source of ATP in the cell and engaged in other aspects of cell metabolism and cell function, including the regulation of ion homeostasis, cell growth, redox status, and cell signaling. Due to their central role in cell life and death, mitochondria are also involved in the pathogenesis and progression of human diseases/conditions, including neurodegenerative and cardiovascular disorders, cancer, diabetes, inflammation, and aging. However, despite the increasing number of studies, precise mechanisms whereby mitochondria are involved in the regulation of basic physiological functions, as well as their role in the cell under pathophysiological conditions, remain unknown. A lack of in-depth knowledge of the regulatory mechanisms of mitochondrial metabolism and function, as well as interplay between the factors that transform the organelle from its role in pro-survival to pro-death, have hindered the development of new mitochondria-targeted pharmacological and conditional approaches for the treatment of human diseases. This book highlights the latest achievements in elucidating the role of mitochondria under physiological conditions, in various cell/animal models of human diseases, and in patients.
The Social Security Administration (SSA) uses a screening tool called the Listing of Impairments to identify claimants who are so severely impaired that they cannot work at all and thus immediately qualify for benefits. In this report, the IOM makes several recommendations for improving SSA's capacity to determine disability benefits more quickly and efficiently using the Listings.
Heart Cell Coupling and Impulse Propagation in Health and Disease includes an up-to-date review on how heart cells communicate and impulse propagation under normal as well as under pathological conditions. The complexity of intercellular coupling and impulse propagation is discussed, providing the reader with a broad view of the importance of these processes and how they contribute to the generation of cardiac arrhythmias and heart failure. The different aspects and intricacies of heart cell communication is discussed by different authors, each one an expert in their own field. The present publication will be of interest to cardiologists, electrophysiologists, heart physiologists, cardiac pharmacologists, biophysicists, and cell or molecular biologists.
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
Mitochondria have traditionally been associated with metabolic functions; however recent research has uncovered a central role for these organelles in cell signaling, cell survival, and cell death. Mitochondrial dysfunction is a factor in a myriad of pathophysiological conditions, including age-related neurodegenerative disorders, cancer, metabolic
The importance of the developmental approach for experimental and clinical cardiology is indisputable. Clinical-epidemiological studies have clearly shown that the risk factors of serious cardiovascular diseases, such as atherosclerosis and ischemic heart disease, are already present during the early phases of ontogenetic development. Furthermore, congenital cardiovascular malformations remain the single largest cause of infant mortality from congenital defects in industrial countries. It is therefore not surprising that the interest of theoretical and clinical cardiologists in the developmental approach keeps increasing. Advances in molecular biology accelerated this trend substantially. This book is based on contributions presented at the international symposium The Developing Heart in Prague in May 2000. It is our contention that the biological, electrophysiological, morphological, functional, biochemical and functional approaches employed by distinguished scientists worldwide will provide the reader with a global picture for changes characterizing the developing heart. It should stimulate the curiosity of cardiovascular scientists in gaining insight into the mechanisms of normal and pathological development.
This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.