Download Free Hardware Design And Petri Nets Book in PDF and EPUB Free Download. You can read online Hardware Design And Petri Nets and write the review.

Hardware Design and Petri Nets presents a summary of the state of the art in the applications of Petri nets to designing digital systems and circuits. The area of hardware design has traditionally been a fertile field for research in concurrency and Petri nets. Many new ideas about modelling and analysis of concurrent systems, and Petri nets in particular, originated in theory of asynchronous digital circuits. Similarly, the theory and practice of digital circuit design have always recognized Petri nets as a powerful and easy-to-understand modelling tool. The ever-growing demand in the electronic industry for design automation to build various types of computer-based systems creates many opportunities for Petri nets to establish their role of a formal backbone in future tools for constructing systems that are increasingly becoming distributed, concurrent and asynchronous. Petri nets have already proved very effective in supporting algorithms for solving key problems in synthesis of hardware control circuits. However, since the front end to any realistic design flow in the future is likely to rely on more pragmatic Hardware Description Languages (HDLs), such as VHDL and Verilog, it is crucial that Petri nets are well interfaced to such languages. Hardware Design and Petri Nets is divided into five parts, which cover aspects of behavioral modelling, analysis and verification, synthesis from Petri nets and STGs, design environments based on high-level Petri nets and HDLs, and finally performance analysis using Petri nets. Hardware Design and Petri Nets serves as an excellent reference source and may be used as a text for advanced courses on the subject.
This volume contains the proceedings of the 14th International Conference onApplication and Theory of Petri Nets. The aim of the Petri net conferences is to create a forum for discussing progress in the application and theory of Petri nets. Typically, the conferences have 150-200 participants, one third of whom come from industry, while the rest are from universities and research institutes. The volume includes three invited papers, "Modeling and enactment of workflow systems" (C.A. Ellis, G.J. Nutt), "Interleaving functional and performance structural analysis of net models" (M. Silva), and "FSPNs: fluid stochastic Petri nets" (K.S. Trivedi, V.G. Kulkarni), together with 26 full papers (selected from 102 submissions) and 6 project papers.
As CMOS semiconductor technology strides towards billions of transistors on a single die new problems arise on the way. They are concerned with the - minishing fabrication process features, which a?ect for example the gate-to-wire delay ratio. They manifest themselves in greater variations of size and operating parameters of devices, which put the overall reliability of systems at risk. And, most of all, they have tremendous impact on design productivity, where the costs of utilizing the growing silicon ‘real estate’ rocket to billions of dollars that have to be spent on design, veri?cation, and testing. All such problems call for new - sign approaches and models for digital systems. Furthermore, new developments in non-CMOS technologies, such as single-electron transistors, rapid single-?- quantum devices, quantum dot cells, molecular devices, etc. , add extra demand for new research in system design methodologies. What kind of models and design methodologies will be required to build systems in all these new technologies? Answering this question, even for each particular type of new technology generation, is not easy, especially because sometimes it is not even clear what kind of elementary devices are feasible there. This problem is of an interdisciplinary nature. It requires an bridges between di?erent scienti?c communities. The bridges must be built very quickly, and be maximally ?exible to accommodate changes taking place in a logarithmic timescale.
The two-volume set originates from the Advanced Course on Petri Nets held in Dagstuhl, Germany in September 1996; beyond the lectures given there, additional chapters have been commissioned to give a well-balanced presentation of the state of the art in the area. Together with its companion volume "Lectures on Petri Nets I: Basic Models" this book is the actual reference for the area and addresses professionals, students, lecturers, and researchers who are - interested in systems design and would like to learn to use Petri nets familiar with subareas of the theory or its applications and wish to view the whole area - interested in learning about recent results presented within a unified framework - planning to apply Petri nets in practical situations - interested in the relationship of Petri nets to other models of concurrent systems.
The IFIP TC-10 Working Conference on Distributed and Parallel Embedded Systems (DIPES 2004) brings together experts from industry and academia to discuss recent developments in this important and growing field in the splendid city of Toulouse, France. The ever decreasing price/performance ratio of microcontrollers makes it economically attractive to replace more and more conventional mechanical or electronic control systems within many products by embedded real-time computer systems. An embedded real-time computer system is always part of a well-specified larger system, which we call an intelligent product. Although most intelligent products start out as stand-alone units, many of them are required to interact with other systems at a later stage. At present, many industries are in the middle of this transition from stand-alone products to networked embedded systems. This transition requires reflection and architecting: The complexity of the evolving distributed artifact can only be controlled, if careful planning and principled design methods replace the - hoc engineering of the first version of many standalone embedded products.
This tutorial volume originates from the 4th Advanced Course on Petri Nets, ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures given at ACPN 2003, additional chapters have been commissioned to give a well-balanced presentation of the state of the art in the area. This book will be useful as both a reference for those working in the area as well as a study book for the reader who is interested in an up-to-date overview of research and development in concurrent and distributed systems; of course, readers specifically interested in theoretical or applicational aspects of Petri nets will appreciate the book as well.
Formal methods for hardware design still find limited use in industry. Yet current practice has to change to cope with decreasing design times and increasing quality requirements. This research report presents results from the Esprit project FORMAT (formal methods in hardware verification) which involved the collaboration of the enterprises Siemens, Italtel, Telefonica I+D, TGI, and AHL, the research institute OFFIS, and the universities of Madrid and Passau. The work presented involves advanced specification languages for hardware design that are intuitive to the designer, like timing diagrams and state based languages, as well as their relation to VHDL and formal languages like temporal logic and a process-algebraic calculus. The results of experimental tests of the tools are also presented.
This book constitutes the refereed proceedings of the 21st International Conference on Application and Theory of Petri Nets, ICATPN 2000, held in Aarhus, Denmark, in June 2000. The 20 revised full papers presented together with four invited surveys and four tool presentations were carefully reviewed and selected from 57 submissions. The papers address all current aspects of Petri net research and development including system design and verification, UML, compositionality, process algebras, model checking, computer networking, business process engineering, communication networks, etc. Various classes of Petri nets are discussed including safe Petri nets, high-level Petri nets, colored Petri nets, P/T nets, and timed Petri nets.
A set of original results in the ?eld of high-level design of logical control devices and systems is presented in this book. These concern different aspects of such important and long-term design problems, including the following, which seem to be the main ones. First, the behavior of a device under design must be described properly, and some adequate formal language should be chosen for that. Second, effective algorithmsshouldbeusedforcheckingtheprepareddescriptionforcorrectness, foritssyntacticandsemanticveri?cationattheinitialbehaviorlevel.Third,the problem of logic circuit implementation must be solved using some concrete technological base; ef?cient methods of logic synthesis, test, and veri?cation should be developed for that. Fourth, the task of the communication between the control device and controlled objects (and maybe between different control devices)waitsforitssolution.Alltheseproblemsarehardenoughandcannotbe successfully solved without ef?cient methods and algorithms oriented toward computer implementation. Some of these are described in this book. The languages used for behavior description have been descended usually from two well-known abstract models which became classic: Petri nets and ?nite state machines (FSMs). Anyhow, more detailed versions are developed and described in the book, which enable to give more complete information concerningspeci?cqualitiesoftheregardedsystems.Forexample,themodelof parallelautomatonispresented,whichunliketheconventional?niteautomaton can be placed simultaneously into several places, calledpartial. As a base for circuit implementation of control algorithms, FPGA is accepted in majority of cases.
This book is a comprehensive, systematic survey of the synthesis problem, and of region theory which underlies its solution, covering the related theory, algorithms, and applications. The authors focus on safe Petri nets and place/transition nets (P/T-nets), treating synthesis as an automated process which, given behavioural specifications or partial specifications of a system to be realized, decides whether the specifications are feasible, and then produces a Petri net realizing them exactly, or if this is not possible produces a Petri net realizing an optimal approximation of the specifications. In Part I the authors introduce elementary net synthesis. In Part II they explain variations of elementary net synthesis and the unified theory of net synthesis. The first three chapters of Part III address the linear algebraic structure of regions, synthesis of P/T-nets from finite initialized transition systems, and the synthesis of unbounded P/T-nets. Finally, the last chapter in Part III and the chapters in Part IV cover more advanced topics and applications: P/T-net with the step firing rule, extracting concurrency from transition systems, process discovery, supervisory control, and the design of speed-independent circuits. Most chapters conclude with exercises, and the book is a valuable reference for both graduate students of computer science and electrical engineering and researchers and engineers in this domain.