Download Free Hanford Tank Waste Remediation System Pretreatment Chemistry And Technology Nureg Cr 6714 Us Nuclear Regulatory Commission Book in PDF and EPUB Free Download. You can read online Hanford Tank Waste Remediation System Pretreatment Chemistry And Technology Nureg Cr 6714 Us Nuclear Regulatory Commission and write the review.

The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to safely manage an dispose of the Hanford Site tank waste. Pretreatment is one of the major program elements of the TWRS. The scope of the TWRS Tank Waste Pretreatment Program is to treat tank waste to separate it into high- and low-level waste fractions and to provide additional treatment as required to feed low-level waste fractions and to provide additional treatment as required to feed low-level and high-level waste immobilization processes. The Pretreatment Program activities include technology development, design, fabrication, construction, and operation of facilities to support the pretreatment of radioactive mixed waste retrieved from 28 large underground double-shell tanks and 149 single-shell tanks.
Work conducted for the Underground Storage Tank Integrated Demonstration supports technology demonstration for tank remediation operations at the US Department of Energy's (DOE) Hanford Site and other DOE sites. Several technical areas within the demonstration are being investigated by the Waste Pretreatment Technology Development task to support final treatment and disposal of Hanford tank waste. The experimental work includes waste characterizations; dissolution, leaching and extraction tests; bulk salt separations by freeze crystallization; and radiochemical separations with extraction chromatography resins. Chemical species and particle size data provide background information for interpreting waste leaching and dissolution data. Tie major crystalline phases in one single-shell tank (SST) waste are sodium nitrate and bismuth phosphate, while the major phases in another SST waste are boehmite, gibbsite, and sodium nitrate. A scanning electron microscopy (SEM) method of particle size analysis shows that many of the sub-micron particles in the two SST wastes appear to be aggregates of smaller, spheroidal particles. In turn, leaching, dissolution, and extraction studies, performed with tank wastes, provide fundamental information needed to evaluate existing pretreatment technologies. Preliminary results from the dissolution of one SST waste indicate that 2M nitric acid may effectively leach enough transuranic material that the sludge could be disposed of as low level waste.
The U.S. Department of Energy's (DOE's), Office of River Protection (ORP) located at Hanford Washington has established a contract (1) to design, construct, and commission a new Waste Treatment and Immobilization Plant (WTP) that will treat and immobilize the Hanford tank wastes for ultimate disposal. The WTP is comprised of four major elements, pretreatment, LAW immobilization, HLW immobilization, and balance of plant facilities. This paper describes the technologies selected for pretreatment of the LAW and HLW tank wastes, how these technologies were selected, and identifies the major technology testing activities being conducted to finalize the design of the WTP.
The purpose of this work is to evaluate and compare radionuclide separations/processing technologies being developed or considered as Hanford tank waste pretreatment alternatives. These technologies are integrated into a total cleanup system that includes tank waste retrieval, treatment, and disposal. Current Hanford flowsheets typically include only mature, developed technologies, not new technologies. Thus, this work examines the impact/benefits of inserting new technologies into Hanford flowsheets. Waste treatment must produce disposal fractions which are less troublesome than the original material. Researchers seeking effective treatment methods may lack the tools or expertise to fully understand the implications of their approach in terms of secondary and tertiary waste streams or the extent to which a unique new process will affect upstream or downstream processes. This work has developed and demonstrated mass balance methods that clarify the effect of including individual processes in an integrated waste treatment system, such as the Hanford cleanup system. The methods provide a measure of treatment effectiveness and a format for the researcher to understand waste stream interrelationships and determine how a particular treatment technology can best be used in a cleanup system. A description of the Hanford tank waste cleanup model developed using the ASPEN PLUS flowsheet simulation tool is given. Important aspects of the modeling approach are discussed along with a description of how performance measures were developed and integrated within the simulation to evaluate and compare various Hanford tank waste pretreatment alternatives.
The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the Hanford Site tank waste. The overall strategy for disposing of tank waste is evolving and initial recommendations on a course of action are expected in March, 1993. Pretreatment of these wastes may be required for one or both of the following reasons: (1) resolution of tank safety issues, and (2) preparation of low level and high level waste fractions for disposal. Pretreatment is faced with several issues that must be addressed by the deployment strategies that are being formulated. These issues are identified. There is also a discussion of several pretreatment deployment strategies and how these strategies address the issues. Finally, the technology alternatives that are being considered for the pretreatment function are briefly discussed.