Download Free Handbook Of Telechelic Polyesters Polycarbonates And Polyethers Book in PDF and EPUB Free Download. You can read online Handbook Of Telechelic Polyesters Polycarbonates And Polyethers and write the review.

Telechelic polymers have garnered a great deal of scientific interest due to their reactive chain-end functions. This comprehensive book compiles and details the basic principles of and cutting-edge research in telechelic polyesters, polycarbonates, and polyethers, ranging from synthesis to applications. It discusses general strategies toward telechelic polymers, centered on the fundamental aspects of polycondensation reactions, of cationic, anionic, coordination-insertion, and activated monomer mechanisms of the metal-, enzyme-, or otherwise organocatalyzed ring-opening polymerization of cyclic monomers, and of postpolymerization chemical modification methods of polymer precursors. All main classes of polymers are covered separately, comprising polyhydroxyalkanoates, poly(ε-caprolactone)s, poly(lactic acid)s, polylactides, polycarobnates, and polyethers, including synthetic approaches as well as some illustrative, up-to-date examples and uses. The book also addresses applications of hydroxyl, thiol, amino, or acrylate/methacrylate end-capped polymers as starting materials for the preparation of diverse polymer architectures ranging from block, graft, and star-shaped polymers and micelles to precursors for ATRP macroinitiators, polyurethane copolymers, shape-memory polymers, or nanosized drug delivery systems. The book will appeal to advanced undergraduate- and graduate-level students of polymer science; researchers in macromolecular science, especially those with an interest in functional and reactive polymers; and polymer chemists in academia and industry.
The third volume of the Handbook of Polyhydroxyalkanoates (PHA) focusses on the production of functionalized PHA bio-polyesters, the post-synthetic modification of PHA, processing and additive manufacturing of PHA, development and properties of PHA-based (bio)composites and blends, the market potential of PHA and follow-up materials, different bulk- and niche applications of PHA, and the fate and use of spent PHA items. Divided into fourteen chapters, it describes functionalized PHA and PHA modification, processing and their application including degradation of spent PHA-based products and fate of these bio-polyesters during compositing and other disposal strategies. Aimed at graduate students and professionals in Polymer science, chemical engineering and bioprocessing, it: Covers current state of the art in the development of chemically modifiable PHA including mult-istep modifications of isolated biopolyesters, short syntheses of monomer feedstocks and so forth. Describes design of functionalized PHA-based polymeric materials by chemical modification . Illustrates preparation of bioactive oligomers derived from microbial PHA and synthetic analogues of natural PHA oligomers. Discusses processing and thermomechanical properties of PHA. Reviews advantages of PHA against other bio-based and conventional polymers with current applications and potential uses of PHA-based polymers highlighting innovative products.
Basic concepts on biodegradable biopolymer science are presented in this book, as well as techniques, analyses, standards, and essential criteria for the characterization of biodegradable materials obtained from biopolymers. The development and innovation of products and processes considering the environment are highlighted in this book. All of the applications described have been discussed from the point of view of sustainability. Additionally, this book highlights that biodegradability is a great burden when trying to replace, modify, and/or design existing products, and processes that are highly polluting. Finally, the present book concludes with reflections on the development of biopolymers in different areas, and some of their consequences depending on their biodegradability.
This successor to the popular textbook, “Polymer Physics” (Springer, 1999), is the result of a quarter-century of teaching experience as well as critical comments from specialists in the various sub-fields, resulting in better explanations and more complete coverage of key topics. With a new chapter on polymer synthesis, the perspective has been broadened significantly to encompass polymer science rather than “just” polymer physics. Polysaccharides and proteins are included in essentially all chapters, while polyelectrolytes are new to the second edition. Cheap computing power has greatly expanded the role of simulation and modeling in the past two decades, which is reflected in many of the chapters. Additional problems and carefully prepared graphics aid in understanding. Two principles are key to the textbook’s appeal: 1) Students learn that, independent of the origin of the polymer, synthetic or native, the same general laws apply, and 2) students should benefit from the book without an extensive knowledge of mathematics. Taking the reader from the basics to an advanced level of understanding, the text meets the needs of a wide range of students in chemistry, physics, materials science, biotechnology, and civil engineering, and is suitable for both masters- and doctoral-level students. Praise for the previous edition: ...an excellent book, well written, authoritative, clear and concise, and copiously illustrated with appropriate line drawings, graphs and tables. - Polymer International ...an extremely useful book. It is a pleasure to recommend it to physical chemists and materials scientists, as well as physicists interested in the properties of polymeric materials. - Polymer News This valuable book is ideal for those who wish to get a brief background in polymer science as well as for those who seek a further grounding in the subject. - Colloid Polymer Science The solutions to the exercises are given in the final chapter, making it a well thought-out teaching text. - Polymer Science
Updated throughout to reflect advances over the last decade, the Fifth Edition continues the handbook’s tradition of authoritative coverage of fundamentals, production methods, properties, and applications of plastics and polymer-based materials. It covers tooling for plastics fabrication processes, thermoplastics, thermosetting plastics, foamed plastics, reinforced plastics, plastisols, and new developments in mold design. It also discusses rubber compounding and processing technologies. More recent developments in polymer fabrication and processing, including electrospinning, electrografted coating, polymer-metal hybrid joining, flex printing, and rapid prototyping/ 3D printing, are also presented. The handbook highlights advanced materials including natural and synthetic gfnanosize polymers, their unusual properties, and innovative applications, as well as polymer-carbon nanocomposites, graphene-based polymer nanocomposites, smart healable polymer composites, smart polymer coatings, electroactive polymers, polymer nanomaterials, and novel nano-/microfibrillar polymer composites. It offers updates on polymer solar battery development, plastics recycling and disposal methods, new concepts of "upcycling" and single-polymer composites, renewable synthetic polymers, biodegradable plastics and composites, and toxicity of plastics. The book also provides an overview of new developments in polymer applications in various fields including packaging, building and construction, corrosion prevention and control, automotive, aerospace applications, electrical and electronic applications, agriculture and horticulture, domestic appliances and business machines, medical and biomedical applications, marine and offshore applications, and sports.
Because the field of plastics is one of the fastest changing areas today, the need arises to offer relevant, comprehensive material on polymers. An established source of information on modern plastics, the Plastics Technology Handbook continues to provide up-to-date coverage on the properties, processing methods, and applications of polymers. Retaining the easy-to-follow structure of the previous editions, this fourth edition includes new topics of interest that reflect recent developments and lead to better insights into the molecular behavior of polymers. New to the Fourth Edition Advances in supramolecular polymerization, flame retardancy, polymer-based nanomedicines, and drug delivery The new concept of oxo-biodegradable polymers Broadened discussion on plastic foams and foam extrusion processes More information on the processing and applications of industrial polymers, including the emerging field of nanoblends Developments in polymer synthesis and applications, such as polymeric sensors, hydrogels and smart polymers, hyperbranched polymers, shape memory polymers, polymeric optical fibers, scavenger resins, polymer nanocomposites, polymerization-filled composites, and wood-polymer composites A state-of-the-art account of the various available methods for plastics recycling Advances in the use of polymers in packaging, construction, the automotive and aerospace industries, agriculture, electronics and electrical technology, biomedical applications, corrosion prevention, and sports and marine applications Plastics Technology Handbook, Fourth Edition thoroughly covers traditional industrial polymers and their processing methods as well as contemporary polymeric materials, recent trends, and the latest applications.
Macromolecular Engineering: Design, Synthesis and Application of Polymers explores the role of macromolecular engineering in the development of polymer systems with engineered structures that offer the desired combination of properties for advanced applications. This book is organized into sections covering theory and principles, science and technology, architectures and technologies, and applications, with an emphasis on the latest advances in techniques, materials, properties, and end uses – and including recently commercialized, or soon to be commercialized, designed polymer systems. The chapters are contributed by a group of leading figures who are actively researching in the field. This is an invaluable resource for researchers and scientists interested in polymer synthesis and design, across the fields of polymer chemistry, polymer science, plastics engineering, and materials science and engineering. In industry, this book supports engineers, R&D, and scientists working on polymer design for application areas such as biomedical and healthcare, automotive and aerospace, construction and consumer goods. - Presents the theory, principles, architectures, technologies, and latest advances in macromolecular engineering for polymer design and synthesis - Explains polymer design for cutting-edge applications areas, including coatings, automotive, industrial, household and medical uses - Approaches several novel materials, such as polyisobutylene (PIB), polyamide-based polyurethanes, and aliphatic polyesters
The contents have been divided into sections on physical states of polymers and characterization techniques. Chapters on physical states include discussions of the rubber elastic state, the glassy state, melts and concentrated solutions, the crystalline state, and the mesomorphic state. Characterization techniques described are molecular spectroscopy and scattering techniques.
Your search for the perfect polymers textbook ends here - with Polymer Science and Technology. By incorporating an innovative approach and consolidating in one volume the fundamentals currently covered piecemeal in several books, this efficient text simplifies the learning of polymer science. The book is divided into three main sections: po