Download Free Handbook Of Statistical Methods For Case Control Studies Book in PDF and EPUB Free Download. You can read online Handbook Of Statistical Methods For Case Control Studies and write the review.

Handbook of Statistical Methods for Case-Control Studies is written by leading researchers in the field. It provides an in-depth treatment of up-to-date and currently developing statistical methods for the design and analysis of case-control studies, as well as a review of classical principles and methods. The handbook is designed to serve as a reference text for biostatisticians and quantitatively-oriented epidemiologists who are working on the design and analysis of case-control studies or on related statistical methods research. Though not specifically intended as a textbook, it may also be used as a backup reference text for graduate level courses. Book Sections Classical designs and causal inference, measurement error, power, and small-sample inference Designs that use full-cohort information Time-to-event data Genetic epidemiology About the Editors Ørnulf Borgan is Professor of Statistics, University of Oslo. His book with Andersen, Gill and Keiding on counting processes in survival analysis is a world classic. Norman E. Breslow was, at the time of his death, Professor Emeritus in Biostatistics, University of Washington. For decades, his book with Nick Day has been the authoritative text on case-control methodology. Nilanjan Chatterjee is Bloomberg Distinguished Professor, Johns Hopkins University. He leads a broad research program in statistical methods for modern large scale biomedical studies. Mitchell H. Gail is a Senior Investigator at the National Cancer Institute. His research includes modeling absolute risk of disease, intervention trials, and statistical methods for epidemiology. Alastair Scott was, at the time of his death, Professor Emeritus of Statistics, University of Auckland. He was a major contributor to using survey sampling methods for analyzing case-control data. Chris J. Wild is Professor of Statistics, University of Auckland. His research includes nonlinear regression and methods for fitting models to response-selective data.
Handbook of Statistical Methods for Case-Control Studies is written by leading researchers in the field. It provides an in-depth treatment of up-to-date and currently developing statistical methods for the design and analysis of case-control studies, as well as a review of classical principles and methods. The handbook is designed to serve as a reference text for biostatisticians and quantitatively-oriented epidemiologists who are working on the design and analysis of case-control studies or on related statistical methods research. Though not specifically intended as a textbook, it may also be used as a backup reference text for graduate level courses. Book Sections Classical designs and causal inference, measurement error, power, and small-sample inference Designs that use full-cohort information Time-to-event data Genetic epidemiology About the Editors Ørnulf Borgan is Professor of Statistics, University of Oslo. His book with Andersen, Gill and Keiding on counting processes in survival analysis is a world classic. Norman E. Breslow was, at the time of his death, Professor Emeritus in Biostatistics, University of Washington. For decades, his book with Nick Day has been the authoritative text on case-control methodology. Nilanjan Chatterjee is Bloomberg Distinguished Professor, Johns Hopkins University. He leads a broad research program in statistical methods for modern large scale biomedical studies. Mitchell H. Gail is a Senior Investigator at the National Cancer Institute. His research includes modeling absolute risk of disease, intervention trials, and statistical methods for epidemiology. Alastair Scott was, at the time of his death, Professor Emeritus of Statistics, University of Auckland. He was a major contributor to using survey sampling methods for analyzing case-control data. Chris J. Wild is Professor of Statistics, University of Auckland. His research includes nonlinear regression and methods for fitting models to response-selective data.
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Statistical concepts provide scientific framework in experimental studies, including randomized controlled trials. In order to design, monitor, analyze and draw conclusions scientifically from such clinical trials, clinical investigators and statisticians should have a firm grasp of the requisite statistical concepts. The Handbook of Statistical Methods for Randomized Controlled Trials presents these statistical concepts in a logical sequence from beginning to end and can be used as a textbook in a course or as a reference on statistical methods for randomized controlled trials. Part I provides a brief historical background on modern randomized controlled trials and introduces statistical concepts central to planning, monitoring and analysis of randomized controlled trials. Part II describes statistical methods for analysis of different types of outcomes and the associated statistical distributions used in testing the statistical hypotheses regarding the clinical questions. Part III describes some of the most used experimental designs for randomized controlled trials including the sample size estimation necessary in planning. Part IV describe statistical methods used in interim analysis for monitoring of efficacy and safety data. Part V describe important issues in statistical analyses such as multiple testing, subgroup analysis, competing risks and joint models for longitudinal markers and clinical outcomes. Part VI addresses selected miscellaneous topics in design and analysis including multiple assignment randomization trials, analysis of safety outcomes, non-inferiority trials, incorporating historical data, and validation of surrogate outcomes.
Handbook of Regression Methods concisely covers numerous traditional, contemporary, and nonstandard regression methods. The handbook provides a broad overview of regression models, diagnostic procedures, and inference procedures, with emphasis on how these methods are applied. The organization of the handbook benefits both practitioners and researchers, who seek either to obtain a quick understanding of regression methods for specialized problems or to expand their own breadth of knowledge of regression topics. This handbook covers classic material about simple linear regression and multiple linear regression, including assumptions, effective visualizations, and inference procedures. It presents an overview of advanced diagnostic tests, remedial strategies, and model selection procedures. Finally, many chapters are devoted to a diverse range of topics, including censored regression, nonlinear regression, generalized linear models, and semiparametric regression. Features Presents a concise overview of a wide range of regression topics not usually covered in a single text Includes over 80 examples using nearly 70 real datasets, with results obtained using R Offers a Shiny app containing all examples, thus allowing access to the source code and the ability to interact with the analyses
1. Provides a comprehensive overview of meta-analysis methods and applications. 2. Divided into four major sub-topics, covering univariate meta-analysis, multivariate, applications and policy. 3. Designed to be suitable for graduate students and researchers new to the field. 4. Includes lots of real examples, with data and software code made available. 5. Chapters written by the leading researchers in the field.
This book on statistical disclosure control presents the theory, applications and software implementation of the traditional approach to (micro)data anonymization, including data perturbation methods, disclosure risk, data utility, information loss and methods for simulating synthetic data. Introducing readers to the R packages sdcMicro and simPop, the book also features numerous examples and exercises with solutions, as well as case studies with real-world data, accompanied by the underlying R code to allow readers to reproduce all results. The demand for and volume of data from surveys, registers or other sources containing sensible information on persons or enterprises have increased significantly over the last several years. At the same time, privacy protection principles and regulations have imposed restrictions on the access and use of individual data. Proper and secure microdata dissemination calls for the application of statistical disclosure control methods to the da ta before release. This book is intended for practitioners at statistical agencies and other national and international organizations that deal with confidential data. It will also be interesting for researchers working in statistical disclosure control and the health sciences.
Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians
Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material