Download Free Handbook Of Research On Ai And Knowledge Engineering For Real Time Business Intelligence Book in PDF and EPUB Free Download. You can read online Handbook Of Research On Ai And Knowledge Engineering For Real Time Business Intelligence and write the review.

Artificial intelligence (AI) is influencing the future of almost every sector and human being. AI has been the primary driving force behind emerging technologies such as big data, blockchain, robots, and the internet of things (IoT), and it will continue to be a technological innovator for the foreseeable future. New algorithms in AI are changing business processes and deploying AI-based applications in various sectors. The Handbook of Research on AI and Knowledge Engineering for Real-Time Business Intelligence is a comprehensive reference that presents cases and best practices of AI and knowledge engineering applications on business intelligence. Covering topics such as deep learning methods, face recognition, and sentiment analysis, this major reference work is a dynamic resource for business leaders and executives, IT managers, AI scientists, students and educators of higher education, librarians, researchers, and academicians.
The recent advancements in the field of the internet of things (IoT), AI, big data, blockchain, augmented reality (AR)/virtual reality (VR), cloud platforms, quantum computing, cybersecurity, and telecommunication technology enabled the promotion of conventional computer-aided industry to the metaverse ecosystem that is powered by AR/VR-driven technologies. In this paradigm shift, the integrated technologies of IoT and AI play a vital role to connect the cyberspace of computing systems and virtual environments. AR/VR supports a huge range of industrial applications such as logistics, the food industry, and manufacturing utilities. AI-Based Technologies and Applications in the Era of the Metaverse discusses essential components of the metaverse ecosystem such as concepts, methodologies, technologies, modeling, designs, statistics, implementation, and maintenance. Covering key topics such as machine learning, deep learning, quantum computing, and blockchain, this premier reference source is ideal for computer scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
A new challenge has become present in the field of generative artificial intelligence (AI). The fundamental nature of education, a vital element for advancing the United Nations' Sustainable Development Goals (SDGs), now grapples with the transformative impact of AI technologies. As we stand at this intersection of progress and pedagogy, critical questions surface about the future roles of educators and the integrity of assessment processes. AI’s rapid progression prompts an exploration of the competencies our education systems must cultivate in a world where human and machine intelligence are becoming increasingly interconnected. Against this backdrop of transformative uncertainty, Integrating Generative AI in Education to Achieve Sustainable Development Goals addresses profound challenges and offers promising solutions at the crossroads of AI and education. This book assembles distinguished academics, researchers, and practitioners, forming a collective voice on the intersection of Generative AI and education. The three-part structure dissects the technical aspects of AI-powered innovations in educational design, explores multidisciplinary applications enhancing educational content, and highlights AI-driven solutions to address equality and inclusion concerns within educational systems. The book also underscores the importance of ethical considerations of generative AI to ensure a future where technology serves the broader goals of sustainability and equitable education.
The convergence of modern technology and social dynamics have shaped the very fabric of today’s organizations, making the role of Business Intelligence (BI) profoundly significant. Data-Driven Business Intelligence Systems for Socio-Technical Organizations delves into the heart of this transformative realm, offering an academic exploration of the tools, strategies, and methodologies that propel enterprises toward data-driven decision-making excellence. Socio-technical organizations, with their intricate interplay between human and technological components, require a unique approach to BI. This book embarks on a comprehensive journey, revealing how BI tools empower these entities to decipher the complexities of their data landscape. From user behavior to social interactions, technological systems to environmental factors, this work sheds light on the multifaceted sources of information that inform organizational strategies. Decision-makers within socio-technical organizations leverage BI insights to discern patterns, spot trends, and uncover correlations that influence operations and the intricate social dynamics within their entities. Research covering real-time monitoring and predictive analytics equips these organizations to respond swiftly to demands and anticipate future trends, harnessing the full potential of data. The book delves into their design, development, and architectural nuances, illuminating these concepts through case studies. This book is ideal for business executives, entrepreneurs, data analysts, marketers, government officials, educators, and researchers.
Artificial Intelligence and Knowledge Processing play a vital role in various automation industries and their functioning in converting traditional industries to AI-based factories. This book acts as a guide and blends the basics of Artificial Intelligence in various domains, which include Machine Learning, Deep Learning, Artificial Neural Networks, and Expert Systems, and extends their application in all sectors. Artificial Intelligence and Knowledge Processing: Improved Decision-Making and Prediction, discusses the designing of new AI algorithms used to convert general applications to AI-based applications. It highlights different Machine Learning and Deep Learning models for various applications used in healthcare and wellness, agriculture, and automobiles. The book offers an overview of the rapidly growing and developing field of AI applications, along with Knowledge of Engineering, and Business Analytics. Real-time case studies are included across several different fields such as Image Processing, Text Mining, Healthcare, Finance, Digital Marketing, and HR Analytics. The book also introduces a statistical background and probabilistic framework to enhance the understanding of continuous distributions. Topics such as Ensemble Models, Deep Learning Models, Artificial Neural Networks, Expert Systems, and Decision-Based Systems round out the offerings of this book. This multi-contributed book is a valuable source for researchers, academics, technologists, industrialists, practitioners, and all those who wish to explore the applications of AI, Knowledge Processing, Deep Learning, and Machine Learning.
The integration of Augmented Reality (AR) and Virtual Reality (VR) with Artificial Intelligence (AI) has immense potential to have beneficial effects for institutions of healthcare and medical education. However, this integration has become so complex, it presents numerous challenges across various domains. Researchers and practitioners often need help to keep pace with the rapid advancements of technologies and applications. Issues such as privacy, security, scalability, and optimization of AR/VR setups remain critical concerns for healthcare industry professionals and academics alike. There needs to be a comprehensive resource that addresses these challenges, if we expect the field to grow in an effective and responsible manner. Modern Technology in Healthcare and Medical Education: Blockchain, IoT, AR, and VR offers a solution to these challenges. By providing insights from researchers and experts in the field, this book serves as a valuable reference for addressing real-world problems. This book is a must-have resource for doctoral and post-doctoral researchers, undergraduate and postgraduate students, industry professionals, and government agencies working in AR/VR. It provides a roadmap for future research and development in this rapidly evolving field. It covers a wide range of topics, including enhancements in AR/VR, AI integration, task-specific training, and applications in healthcare and education.
Communication based on the internet of things (IoT) generates huge amounts of data from sensors over time, which opens a wide range of applications and areas for researchers. The application of analytics, machine learning, and deep learning techniques over such a large volume of data is a very challenging task. Therefore, it is essential to find patterns, retrieve novel insights, and predict future behavior using this large amount of sensory data. Artificial intelligence (AI) has an important role in facilitating analytics and learning in the IoT devices. Applying AI-Based IoT Systems to Simulation-Based Information Retrieval provides relevant frameworks and the latest empirical research findings in the area. It is ideal for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society and trust at the levels of the global economy, networks and organizations, teams and work groups, information systems, and individuals as actors in the networked environments. Covering topics such as blockchain visualization, computer-aided drug discovery, and health monitoring, this premier reference source is an excellent resource for business leaders and executives, IT managers, security professionals, data scientists, students and faculty of higher education, librarians, hospital administrators, researchers, and academicians.
As social robots and the artificial intelligence (AI) that powers them become more advanced, they will likely take on more social and work roles. There is a variety of ways social robots can be engaged in human life, and they can leave an impact in terms of ease of use, productivity, and human support. The interactivity and receptivity of social robots can encourage humans to form social relationships with them. But now robots are intended to perform socially intelligent and interactive services like reception, guidance, emotional companionship, and more, which makes social human-robot interaction essential to help improve aspects of quality of life as well as to improve the efficiency of human care services. AI-Enabled Social Robotics in Human Care Services addresses recent advances in the latest technologies, new research results, and developments in the area of social robotics and AI and the latest developments in the field and future directions that can be beneficial to human society and human care services. Covering topics such as agriculture waste management systems, elder care, and facial emotion recognition, this premier reference source is an essential resource for AI professionals, computer scientists, robotics engineers, human care professionals, students and educators of higher education, librarians, researchers, and academicians.
In the dynamic landscape of organizational management, the challenge of effectively evaluating and enhancing employee performance stands as a pivotal obstacle to maximizing workplace productivity and motivation. Traditional performance appraisal methods often fall short in providing meaningful insights into employees' contributions and fostering a culture of continuous improvement. This gap between outdated evaluation techniques and the evolving demands of the modern workforce presents a pressing dilemma for Human Resource Management professionals and organizational leaders worldwide. Employee Performance Management for Improved Workplace Motivation emerges as a definitive solution to this critical problem, offering a comprehensive guide to revolutionizing performance management systems. This book meticulously explores the intricacies of performance evaluation, from planning and monitoring to reviewing and rewarding. By integrating theoretical frameworks, practical case studies, and strategic insights, the book equips HR professionals, managers, and scholars with the tools and knowledge needed to implement effective performance management practices that drive employee motivation and organizational success.
The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.