Download Free Handbook Of Natural Polymers Volume 1 Book in PDF and EPUB Free Download. You can read online Handbook Of Natural Polymers Volume 1 and write the review.

The Handbook of Natural Polymers: Sources, Synthesis, and Characterization is a comprehensive resource covering extraction and processing methods for polymers from natural sources, with an emphasis on the latest advances. The book begins by introducing the current state-of-the-art, challenges, and opportunities in natural polymers. This is followed by detailed coverage of extraction, synthesis, and characterization methods, organized by polymer type. Along with broad chapters discussing approaches to polysaccharide-based polymers, dedicated chapters offer in-depth information on nanocellulose, chitin and chitosan, gluten, alginate, natural rubber, gelatin, pectin, lignin, keratin, gutta percha, shellac, silk, wood, casein, albumin, collagen, hemicellulose, polyhydroxyalkanoates, zein, soya protein, and gum. The final chapters explore other key themes, including filler interactions and properties in natural polymer-based composites, biocompatibility and cytotoxicity, biodegradability, life cycle, and recycling. Throughout the book, information is supported by data, and guidance is offered regarding potential scale-up and industry factors. As part of a 3-volume handbook offering comprehensive coverage of natural polymers, this book will be of interest to all those looking to gain a broad knowledge of natural polymers, including academic researchers, scientists, advanced students, engineers, and R&D professionals from a range of disciplines and industries. - Provides systematic coverage of the latest methods for the extraction, synthesis, and characterization of natural polymers. - Includes an extensive range of natural polymer sources, including established biopolymers and emerging materials. - Explores preparation of natural polymers and their composites, blends, IPNs, gels, and nanoparticles.
Polymers are one of the most fascinating materials of the present era finding their applications in almost every aspects of life. Polymers are either directly available in nature or are chemically synthesized and used depending upon the targeted applications.Advances in polymer science and the introduction of new polymers have resulted in the significant development of polymers with unique properties. Different kinds of polymers have been and will be one of the key in several applications in many of the advanced pharmaceutical research being carried out over the globe. This 4-partset of books contains precisely referenced chapters, emphasizing different kinds of polymers with basic fundamentals and practicality for application in diverse pharmaceutical technologies. The volumes aim at explaining basics of polymers based materials from different resources and their chemistry along with practical applications which present a future direction in the pharmaceutical industry. Each volume offer deep insight into the subject being treated. Volume 1: Structure and Chemistry Volume 2: Processing and Applications Volume 3: Biodegradable Polymers Volume 4: Bioactive and Compatible Synthetic/Hybrid Polymers
Handbook of Polymers, Third Edition represents an update on available data, including new values for many commercially available products, verification of existing data, and removal of older data where it is no longer useful. Polymers selected for this edition include all primary polymeric materials used by the plastics and chemical industries and specialty polymers used in the electronics, pharmaceutical, medical and aerospace fields, with extensive information also provided on biopolymers. The book includes data on all polymeric materials used by the plastics industry and branches of the chemical industry, as well as specialty polymers in the electronics, pharmaceutical, medical and space fields. The entire scope of the data is divided into sections to make data comparison and search easy, including synthesis, physical, mechanical, and rheological properties, chemical resistance, toxicity, environmental impact, and more. - Provides key data on all primary polymeric materials used in a wide range of industries and applications - Presents easy-to-access data divided into sections, making comparisons and search simple and intuitive - Includes data on general properties, history, synthesis, structure, physical properties, mechanical properties, chemical resistance, flammability, weather stability, toxicity, and more
The Handbook of Natural Polymers, Volume Two: Functionalization, Surface Modification, and Properties covers modifications, functionalization, analysis and properties of polymers from natural sources. The book begins by introducing the current state-of-the-art, challenges and opportunities in natural polymers. This is followed by detailed coverage of methods for chemical, physical and surface modifications, and functionalization of natural polymers, including nanocellulose composites, gluten, chitin, alginate, pectin, keratin, shellac, wool, hemicellulose, lignin, natural rubber, albumin, collagen, gelatin, zein, soya protein, silk fibroin, gutta percha and gum. The final chapters explain several other key aspects, such as microscopical and spectroscopical analysis, mechanical, thermal, and more. The book aims to offer potential avenues for the preparation, modification, and implementation of advanced natural polymer-based materials with the desired properties for specific applications. - Provides systematic coverage of the latest methods for functionalization, surface modification, and properties' analysis of natural polymers - Includes an extensive range of natural polymer sources, including established biopolymers and emerging materials - Explores modifications and properties of natural polymers and their related composites, blends, IPNs, gels and nanoparticles
Biopolymers and Biodegradable Plastics are a hot issue across the Plastics industry, and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction indusry to the automotive sector. This book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers. Topics covered include preparation, fabrication, applications and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed. Dr Ebnesajjad provides readers with an in-depth reference for the plastics industry – material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators – and for industry sectors utilizing biopolymers – automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry. Essential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics. Includes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds. Coverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.
This book details polysaccharides and other important biomacromolecules covering their source, production, structures, properties, and current and potential application in the fields of biotechnology and medicine. It includes a systematic discussion on the general strategies of isolation, separation and characterization of polysaccharides and proteins. Subsequent chapters are devoted to polysaccharides obtained from various sources, including botanical, algal, animal and microbial. In the area of botanical polysaccharides, separate chapters are devoted to the sources, structure, properties and medical applications of cellulose and its derivatives, starch and its derivatives, pectins, and exudate gums, notably gum arabic. Another chapter discusses the potential of hemicelluloses (xylans and xylan derivatives) as a new source of functional biopolymers for biomedical and industrial applications. The algal polysaccharide, alginate, has significant application in food, pharmaceuticals and the medical field, all of which are reviewed in a separate chapter. Polysaccharides of animal origin are included with separate chapters on the sources, production, biocompatibility, biodegradability and biomedical applications of chitin (chitosan) and hyaluronan. With the increasing knowledge and applications of genetic engineering there is also an introduction in the book to nucleic acid polymers, the genome research and genetic engineering. Proteins and protein conjugates are covered, with one chapter providing a general review of structural glycoproteins, fibronectin and laminin, together with their role in the promotion of cell adhesion in vascular grafts, implants and tissue engineering. Another chapter discusses general aspects of a number of industrial proteins, including casein, caseinates, whey protein, gluten and soy proteins, with emphasis on their medical applications, and with reference to the potential of bacterial proteins. Another natural polymer resource, microbial polyesters, although small compared with polysaccharides and proteins, is also gaining increasing interest in biomedical technology and other industrial sectors. One chapter, therefore, is devoted to microbial polyesters, with comprehensive coverage of their biosynthesis, properties, enzymic degradation and applications. By dealing with biopolymers at the molecular level, the book is aimed at the biomedical and wider materials science communities and provides an advanced overview of biopolymers at the graduate and postgraduate level. In addition it will appeal to both academic and industrial life scientists who are involved in research and development activities in the medical and biotechnology field.
Covering a broad range of polymer science topics, Handbook of Polymer Synthesis, Characterization, and Processing provides polymer industry professionals and researchers in polymer science and technology with a single, comprehensive handbook summarizing all aspects involved in the polymer production chain. The handbook focuses on industrially important polymers, analytical techniques, and formulation methods, with chapters covering step-growth, radical, and co-polymerization, crosslinking and grafting, reaction engineering, advanced technology applications, including conjugated, dendritic, and nanomaterial polymers and emulsions, and characterization methods, including spectroscopy, light scattering, and microscopy.
Polymers from natural sources are particularly useful as biomaterials and in regenerative medicine, given their similarity to the extracellular matrix and other polymers in the human body. This important book reviews the wealth of research on both tried and promising new natural-based biomedical polymers, together with their applications as implantable biomaterials, controlled-release carriers or scaffolds for tissue engineering.The first part of the book reviews the sources, processing and properties of natural-based polymers for biomedical applications. Part two describes how the surfaces of polymer-based biomaterials can be modified to improve their functionality. The third part of the book discusses the use of natural-based polymers for biodegradable scaffolds and hydrogels in tissue engineering. Building on this foundation, Part four looks at the particular use of natural-gelling polymers for encapsulation, tissue engineering and regenerative medicine. The penultimate group of chapters reviews the use of natural-based polymers as delivery systems for drugs, hormones, enzymes and growth factors. The final part of the book summarises research on the key issue of biocompatibility.Natural-based polymers for biomedical applications is a standard reference for biomedical engineers, those studying and researching in this important area, and the medical community. - Examines the sources, processing and properties of natural based polymers for biomedical applications - Explains how the surfaces of polymer based biomaterials can be modified to improve their functionality - Discusses the use of natural based polymers for hydrogels in tissue engineering, and in particular natural gelling polymers for encapsulation and regenerative medicine
Handbook of Biodegradable Polymers, the seventh volume in the Drug Delivery and Targeting book series, provides a source manual for synthetic procedures, properties and applications of bioerodible polymers. The authors describe widely available materials such as polyactides, collagen and gelatin, as well as polymers of emerging importance, such as the genetically-engineered and elastin-based polymers which are either proprietary or in early stages of development. Section I addresses synthetic absorbable polymers, and Section 2 profiles natural, semi-synthetic and biosynthetic polymers. Section 3 discusses the surface characterization of degradable polymers, the modeling of biodegradation and non-medical polymers. This book is ideal for researchers from academia and industry as well as chemists, pharmacists and physicians who deal with biopolymers, drug delivery and targeting, bioengineering and implantable devices.
Natural and synthetic water soluble polymers are used in a wide range of familiar industrial and consumer products, including coatings and inks, papers, adhesives, cosmetics and personal care products. They perform a variety of functions without which these products would be significantly more expensive, less effective or both. Written for research, development and formulation chemists, technologists and engineers at graduate level and beyond in the fine and specialty chemicals, polymers, food and pharmaceutical industries, the Handbook of Industrial Water Soluble Polymers deals specifically with the functional properties of both natural and synthetic water soluble polymers. By taking a function based approach, rather than a “polymer specific” approach the book illustrates how polymer structure leads to effect, and shows how different polymer types can be employed to achieve appropriate product properties.