Download Free Handbook Of Glycomics Book in PDF and EPUB Free Download. You can read online Handbook Of Glycomics and write the review.

The Handbook of Glycomics provides the first comprehensive overview of the emerging field of glycomics, defined as the study of all complex carbohydrates in an organism or cell ("the glycome"). Beginning with analytic approaches and bioinformatics, this work provides a detailed discussion of relevant databases, data integration, and analysis. It then moves on to a discussion of specific model organism and pathogen glycomes followed by therapeutic approaches to human disorders of glycosylization. Structure and function of glycomes are included along with state-of-the-art technologies and systems approaches to the analysis of glycans. - Synthesizes contributions from experts in biology, chemistry, bioinformatics, biotechnology, and medicine - Highlights chapters devoted to chemical synthesis, cancer glycomics and immune cell glycomics - Includes discussions of proteomics, mass spectrometry, NMR, array technology, and transcriptomics analytic approaches
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
The so-called postgenomic research era has now been launched, and the field of gly cobiology and glycotechnology has become one of the most important areas in life science because glycosylation is the most common post-translational modification reaction of proteins in vivo. On the basis of Swiss-Prot data, over 50% proteins are known to undergo glycosylation, but in fact the actual functions of most of the sugar chains in the glycoconjugates remain unknown. The complex carbohydrate chains of glycoproteins, glycolipids, and proteoglycans represent the secondary gene products formed through the reactions of glycosyl transferases. The regulation of the biosynthesis of sugar chains is under the control of the expression of glycosyltransferases, their substrate specificity, and their local ization in specific tissue sites. There is a growing body of evidence to suggest that these enzymes play pivotal roles in a variety of important cellular differentiation and developmental events, as well as in disease processes. Over 300 glycosyltransferases appear to exist in mammalian tissues. If the genes that have been purified and cloned from various species such as humans, cattle, pigs, rats and mice are counted as one, approximately 110 glycogenes that encode glycosyltransferases and related genes have been cloned at present, and this number continues to grow each day. However, most of the functions of the glycosyltransferase genes and related genes are unknown. This fact has stimulated numerous new and interesting approaches in molecular biologi cal investigations.
In this 3 volume collection focusing on glycomics, readers will appreciate how such discoveries were made and how such methods can be applied for readers' own research efforts - Each chapter has been designed so that enough scientific background will be given in each chapter for further development of methods by readers themselves - Useful for all levels of scientists starting from the last years of colleges, graduate students, postdoctoral fellows to professors and to all levels of scientists in research institutes including industry
This volume provides a comprehensive understanding of the enigmatic identity of the glycome, a complex but important area of research that has been largely ignored due to its complexity. The authors thoroughly deal with almost all aspects of the glycome, i.e., elucidation of the glycan identity enigma and its role in regulation of the cellular process, and in disease etiology. The book bridges the knowledge gap in understanding the glycome, from being a cell signature to its applications in disease etiology. In addition, it details many of the major insights regarding the possible role of the glycome in various diseases as a therapeutic marker. The book systematically covers the major aspects of the glycome, including the significance of substituting the diverse monosaccharide units to glycoproteins, the role of glycans in disease pathologies, and the challenges and advances in glycobiology. The authors stress the significance and huge encoding power of carbohydrates as well as provide helpful insights in framing the bigger picture. The Glycome: Understanding the Diversity and Complexity of Glycobiology details state-of-the-art developments and emerging challenges of glycome biology, which are going to be key areas of future research, not only in the glycobiology field but also in pharmaceutics.
"The field of Biomarkers and Precision Medicine in drug development is rapidly evolving and this book presents a snapshot of exciting new approaches. By presenting a wide range of biomarker applications, discussed by knowledgeable and experienced scientists, readers will develop an appreciation of the scope and breadth of biomarker knowledge and find examples that will help them in their own work." -Maria Freire, Foundation for the National Institutes of Health Handbook of Biomarkers and Precision Medicine provides comprehensive insights into biomarker discovery and development which has driven the new era of Precision Medicine. A wide variety of renowned experts from government, academia, teaching hospitals, biotechnology and pharmaceutical companies share best practices, examples and exciting new developments. The handbook aims to provide in-depth knowledge to research scientists, students and decision makers engaged in Biomarker and Precision Medicine-centric drug development. Features: Detailed insights into biomarker discovery, validation and diagnostic development with implementation strategies Lessons-learned from successful Precision Medicine case studies A variety of exciting and emerging biomarker technologies The next frontiers and future challenges of biomarkers in Precision Medicine Claudio Carini, Mark Fidock and Alain van Gool are internationally recognized as scientific leaders in Biomarkers and Precision Medicine. They have worked for decades in academia and pharmaceutical industry in EU, USA and Asia. Currently, Dr. Carini is Honorary Faculty at Kings’s College School of Medicine, London, UK. Dr. Fidock is Vice President of Precision Medicine Laboratories at AstraZeneca, Cambridge, UK. Prof.dr. van Gool is Head Translational Metabolic Laboratory at Radboud university medical school, Nijmegen, NL.
Involved in nearly every therapeutic area, particularly cancer, biomarkers have experienced tremendous advances since the first edition of this book, both in the discovery of biomarkers and in their applications. To aid in this imperative research, Prof. Kewal K. Jain’s Handbook of Biomarkers, Second Edition features a full revision and additional chapters to thoroughly describe many different types of biomarkers and their discovery using various "-omics" technologies, along with the background information needed for the evaluation of biomarkers as well as the essential procedures for their validation and use in clinical trials. With biomarkers described first according to technologies and then according to various diseases, this detailed book features the key correlations between diseases and classifications of biomarkers, which provides the reader with a guide to sort out current and future biomarkers. Comprehensive and cutting-edge, The Handbook of Biomarkers, Second Edition serves as a vital guide to furthering our understanding of biomarkers, which, by facilitating the combination of therapeutics with diagnostics, promise to play an important role in the development of personalized medicine, one of the most important trends in healthcare today.
The growing importance of glycobiology and carbohydrate chemistry in modern biotechnology and the pharmaceutical industry makes accurate carbohydrate analysis indispensable. This book provides the principles and protocols of various fundamental carbohydrate analysis methods. Choice of method is entirely dependent upon the type of material being investigated (biological samples, food products, etc.), and the level of structural detail required, i.e. sugar content, compositional analysis, linkages between the sugar components, or the total chemical structure of a given molecule. Full structural characterization of carbohydrate chains requires significant time, resources, and skill in several methods of analysis; no single technique can address all glycan analysis needs. This book summarizes several existing analytical techniques (both chemical and physical) in an introductory volume designed for the non-expert researcher or novice scientist. While background in carbohydrate chemistry is assumed, all information necessary to understanding the described techniques is addressed in the text.
This authoritative handbook covers all aspects of immunosenescence, with contributions from experts in the research and clinical areas. It examines methods and models for studying immunosenescence; genetics; mechanisms including receptors and signal transduction; clinical relevance in disease states including infections, autoimmunity, cancer, metabolic syndrome, neurodegenerative diseases, frailty and osteoporosis; and much more.
Recent advances in the biosciences have led to a range of powerful new technologies, particularly nucleic acid, protein and cell-based methodologies. The most recent insights have come to affect how scientists investigate and define cellular processes at the molecular level. This book expands upon the techniques included in the first edition, providing theory, outlines of practical procedures, and applications for a range of techniques. Written by a well-established panel of research scientists, the book provides an up-to-date collection of methods used regularly in the authors’ own research programs.