Download Free Handbook Of Deep Sea Hydrothermal Vent Fauna Book in PDF and EPUB Free Download. You can read online Handbook Of Deep Sea Hydrothermal Vent Fauna and write the review.

This volume synthesizes the relevant data that is fundamental to our understanding of trace metal biogeochemistry and the ecology of biological communities of deep-sea vent systems. It presents the combined results of biological and geochemical research and analyzes the microdistribution of animals and the spatial structure of vent communities. Careful consideration is given to the export of iron and other trace metals from hydrothermal vents. The environmental conditions to be found in deep-sea hydrothermal community habitats, along with the trace metal behavior in biotope water are characterized and the sources and forms of trace metals taken up by dominant hydrothermal vent animals are discussed. Special attention is paid to the poorly investigated deep biosphere of the sub-seafloor igneous crust. The book is illustrated with a wealth of exceptional deep-sea photos taken by the manned submersible “Mir”, and a dedicated chapter focuses on the role of deep manned submersibles in ocean research. The book will be of interest to researchers and students in the fields of oceanography, geochemistry, biology, the environmental sciences and marine ecology.
Teeming with weird and wonderful life--giant clams and mussels, tubeworms, "eyeless" shrimp, and bacteria that survive on sulfur--deep-sea hot-water springs are found along rifts where sea-floor spreading occurs. The theory of plate tectonics predicted the existence of these hydrothermal vents, but they were discovered only in 1977. Since then the sites have attracted teams of scientists seeking to understand how life can thrive in what would seem to be intolerable or extreme conditions of temperature and fluid chemistry. Some suspect that these vents even hold the key to understanding the very origins of life. Here a leading expert provides the first authoritative and comprehensive account of this research in a book intended for students, professionals, and general readers. Cindy Lee Van Dover, an ecologist, brings nearly two decades of experience and a lively writing style to the text, which is further enhanced by two hundred illustrations, including photographs of vent communities taken in situ. The book begins by explaining what is known about hydrothermal systems in terms of their deep-sea environment and their geological and chemical makeup. The coverage of microbial ecology includes a chapter on symbiosis. Symbiotic relationships are further developed in a section on physiological ecology, which includes discussions of adaptations to sulfide, thermal tolerances, and sensory adaptations. Separate chapters are devoted to trophic relationships and reproductive ecology. A chapter on community dynamics reveals what has been learned about the ways in which vent communities become established and why they persist, while a chapter on evolution and biogeography examines patterns of species diversity and evolutionary relationships within chemosynthetic ecosystems. Cognate communities such as seeps and whale skeletons come under scrutiny for their ability to support microbial and invertebrate communities that are ecologically and evolutionarily related to hydrothermal faunas. The book concludes by exploring the possibility that life originated at hydrothermal vents, a hypothesis that has had tremendous impact on our ideas about the potential for life on other planets or planetary bodies in our solar system.
This book discusses the current direction of the research approach to extreme biomimetics through biological materials-inspired chemistry and its applications in modern technology and medicine. It is a resource covering topics of extreme (psychrophilic and thermopilic) biomineralization, solvothermal and hydrothermal chemistry of metal oxides and nanostructured composites, and bioinspired materials science in a diverse areas. The authors review the current advances in the extreme biomimetics research field and describe various approaches introduced and explored by their respective laboratories. • Details the basic principles of extreme biomimetics approach for design of new materials and applications; • Includes numerous examples of the hierarchical organization of hydrothermally or psychrophilically obtained biocomposites, structural bioscaffolds, biosculpturing, biomimetism, and bioinspiration as tools for the design of innovative materials; • Describes and details the principles of extreme biomimetics with respect to metallization of chemically and thermally stable biopolymers.
Marine hard bottoms feature some of the most spectacular and diverse biological communities on this planet. These not only contain a rich treasure of genetic, taxonomic and functional information but also deliver irreplaceable ecosystem services. At the same time, they are highly vulnerable and increasingly threatened by anthropogenic pressures. This volume has collected contributions by 50 scientists from numerous biogeographic regions, dealing with characteristics of hard bottom communities. Distributional patterns in space and time are described, followed by analyses of the intrinsic and extrinsic dynamics producing these patterns. A strong emphasis is placed on the ongoing changes occurring in the structure and diversity of these communities in response to spiralling environmental impacts, and on state-of-the-art countermeasures aiming to preserve these ecological treasures. Finally, various values of diversity are assessed, hopefully as an incentive for enhanced conservation efforts.
This volume is in honour of Danièle Guinot (Muséum National d'Histoire Naturelle, Paris, France), and was born out of our admiration for Danièle s immense contributions to her discipline. She has helped reawaken interest on the systematics of brachyuran decapods crustaceans, the true crabs. Furthermore, she has significantly helped to redefine the study of the complete evolutionary process in crabs. A total of 35 of her colleagues have contributed to this volume, submitting papers on those aspects of the Brachyura to which Danièle, herself, has significantly contributed taxonomy, evolution, morphology, palaeontology and general biology of crabs. This volume is but a small tribute to a highly respected colleague and friend from the active band of researchers that she has helped so much over the years.
This book is the comprehensive volume of the TAIGA (“a great river ” in Japanese) project. Supported by the Japanese government, the project examined the hypothesis that the subseafloor fluid advection system (subseafloor TAIGA) can be categorized into four types, TAIGAs of sulfur, hydrogen, carbon (methane), and iron, according to the most dominant reducing substance, and the chemolithoautotrophic bacteria/archaea that are inextricably associated with respective types of TAIGAs which are strongly affected by their geological background such as surrounding host rocks and tectonic settings. Sub-seafloor ecosystems are sustained by hydrothermal circulation or TAIGA that carry chemical energy to the chemosynthetic microbes living in an extreme environment. The results of the project have been summarized comprehensively in 50 chapters, and this book provides an overall introduction and relevant topics on the mid-ocean ridge system of the Indian Ocean and on the arc-backarc systems of the Southern Mariana Trough and Okinawa Trough.