Download Free Handbook Of Biomimetics And Bioinspiration Electromechanical Systems Book in PDF and EPUB Free Download. You can read online Handbook Of Biomimetics And Bioinspiration Electromechanical Systems and write the review.

self-assembly and responsiveness of cellular systems; the biomineral formation in bacteria, plants, invertebrates, and vertebrates; the multi-layer structure of skin; the organization of tissue fibers; DNA structures with metal-mediated artificial base pairs; and the anisotropic microstructure of jellyfish mesogloea. In this volume, sensor and microfluidic technologies combined with surface patterning are explored for the diagnosis and monitoring of diseases. The high throughput combinatorial testing of biomaterials in regenerative medicine is also covered. The second volume presents nature-oriented studies and developments in the field of electromechanical devices and systems.
Global warming, pollution, food and water shortage, cyberspace insecurity, over-population, land erosion, and an overburdened health care system are major issues facing the human race and our planet. These challenges have presented a mandate to develop “natural” or “green” technologies using nature and the living system as a guide to rationally design processes, devices, and systems. This approach has given rise to a new paradigm, one in which innovation goes hand-in-hand with less waste, less pollution, and less invasiveness to life on earth. Bioinspiration has also led to the development of technologies that mimic the hierarchical complexity of biological systems, leading to novel highly efficient, more reliable multifunctional materials, devices, and systems that can perform multiple tasks at one time. This multi-volume handbook focuses on the application of biomimetics and bioinspiration in medicine and engineering to produce miniaturized multi-functional materials, devices, and systems to perform complex tasks. Our understanding of complex biological systems at different length scales has increased dramatically as our ability to observe nature has expanded from macro to molecular scale, leading to the rational biologically-driven design to find solution to technological problems in medicine and engineering.The following three-volume set covers the fields of bioinspired materials, electromechanical systems developed from concepts inspired by nature, and tissue models respectively.The first volume focuses on the rational design of nano- and micro-structured hierarchical materials inspired by the relevant characteristics in living systems, such as the self-cleaning ability of lotus leaves and cicadas' wings; the superior walking ability of water striders; the anti-fogging function of mosquitoes' eyes; the water-collecting ability of Namib Desert Beetles and spider silk; the high adhesivity of geckos' feet and rose petals; the high adhesivity of mussels in wet aquatic environments; the anisotropic wetting of butterflies' wings; the anti-reflection capabilities of cicadas' wings; the self-cleaning functionality of fish scales; shape anisotropy of intracellular particles; the dielectric properties of muscles; the light spectral characteristics of plant leaves; the regeneration and self-healing ability of earthworms; the self-repairing ability of lotus leaves; the broadband reflectivity of moths' eyes; the multivalent binding, self-assembly and responsiveness of cellular systems; the biomineral formation in bacteria, plants, invertebrates, and vertebrates; the multi-layer structure of skin; the organization of tissue fibers; DNA structures with metal-mediated artificial base pairs; and the anisotropic microstructure of jellyfish mesogloea. In this volume, sensor and microfluidic technologies combined with surface patterning are explored for the diagnosis and monitoring of diseases. The high throughput combinatorial testing of biomaterials in regenerative medicine is also covered.The second volume presents nature-oriented studies and developments in the field of electromechanical devices and systems. These include actuators and robots based on the movement of muscles, algal antenna and photoreception; the non-imaging light sensing system of sea stars; the optical system of insect ocellus; smart nanochannels and pumps in cell membranes; neuromuscular and sensory devices that mimic the architecture of peripheral nervous system; olfaction-based odor sensing; cilia-mimetic microfluidic systems; the infrared sensory system of pyrophilous insects; ecologically inspired multizone temperature control systems; cochlea and surface acoustic wave resonators; crickets' cercal system and flow sensing abilities; locusts' wings and flapping micro air vehicles; the visual motion sensing of flying insects; hearing aid devices based on the human cochlea; the geometric perception of tortoises and pigeons; the organic matter sensing capability of cats and dogs; and the silent flight of rats. The third volume features engineered models of biological tissues. These include engineered matrices to mimic cancer stem cell niches; in vitro models for bone regeneration; models of muscle tissue that enable the study of cardiac infarction and myopathy; 3D models for the differentiation of embryonic stem cells; bioreactors for in vitro cultivation of mammalian cells; human lung, liver and heart tissue models; topographically-defined cell culture models; ECM mimetic tissue printing; biomimetic constructs for regeneration of soft tissues; and engineered constructs for the regeneration of musculoskeletal and corneal tissue.This three-volume set is a must-have for anyone keen to understand the complexity of biological systems and how that complexity can be mimicked to engineer novel materials, devices and systems to solve pressing technological challenges of the twenty-first century.Key Features:The only handbook that covers all aspects of biomimetics and bioinspiration, including materials, mechanics, signaling and informaticsContains 248 colored figures
Biomimetic research is an emerging field that aims to draw inspiration and substances from natural sources and create biological systems in structure, mechanism, and function through robotics. The products have a wide array of application including surgical robots, prosthetics, neurosurgery, and biomedical image analysis. The Handbook of Research on Biomimetics and Biomedical Robotics provides emerging research on robotics, mechatronics, and the application of biomimetic design. While highlighting mechatronical challenges in today’s society, readers will find new opportunities and innovations in design capabilities in intelligent robotics and interdisciplinary biomedical products. This publication is a vital resource for senior and graduate students, researchers, and scientists in engineering seeking current research on best ways to globally expand online higher education.
People have been finding inspiration in nature in solving their problems, from the very beginning of their existence. In the most general sense, biomimicry, defined as "inspire from the nature," has brought together the engineers and designers nowadays. This collaboration creates innovative and creative outcomes that encourage people with their interdisciplinary relationships. Accordingly, the aim of this book is to bring together different works or developments on biomimetics in interdisciplinary relationship between different areas, especially biomimicry, engineering, and design. The twenty-first century has conceived many new and amazing designs. The book in your hands will surely be an important guide to take a quick look at the future possibilities.
This book is indexed in Chemical Abstracts ServiceSoft and bio-nanomaterials offer a tremendously rich behavior due to the diversity and tailorability of their structures. Built from polymers, nanoparticles, small and large molecules, peptoids and other nanoscale building blocks, such materials exhibit exciting functions, either intrinsically or through the engineering of their organization and combination of blocks. Thus, it is not surprising that a variety of challenges, for example, in energy storage, environment protection, advanced manufacturing, purification and healthcare, can be addressed using these materials. The recent advances in understanding the behavior of soft matter and biomaterials are being actively translated into functional materials systems and devices, which take advantages of newly discovered and specifically created morphologies with desired properties. This major reference work presents a detailed overview of recent research developments on fundamental and application-inspired aspects of soft and bio-nanomaterials and their emerging functions, and will be divided into four volumes: Vol 1: Soft Matter under Geometrical Confinement: From Fundamentals at Planar Surfaces and Interfaces to Functionalities of Nanoporous Materials; Vol 2: Polymers on the Nanoscale: Nano-structured Polymers and Their Applications; Vol 3: Bio-Inspired Nanomaterials: Nanomaterials Built from Biomolecules and Using Bio-derived Principles; Vol 4: Nanomedicine: Nanoscale Materials in Nano/Bio Medicine.
Electric Drives and Electromechanical Devices: Applications and Control, Second Edition, presents a unified approach to the design and application of modern drive system. It explores problems involved in assembling complete, modern electric drive systems involving mechanical, electrical, and electronic elements. This book provides a global overview of design, specification applications, important design information, and methodologies.This new edition has been restructured to present a seamless, logical discussion on a wide range of topical problems relating to the design and specification of the complete motor-drive system. It is organised to establish immediate solutions to specific application problem. Subsidiary issues that have a considerable impact on the overall performance and reliability, including environmental protection and costs, energy efficiency, and cyber security, are also considered. - Presents a comprehensive consideration of electromechanical systems with insights into the complete drive system, including required sensors and mechanical components - Features in-depth discussion of control schemes, particularly focusing on practical operation - Includes extensive references to modern application domains and real-world case studies, such as electric vehicles - Considers the cyber aspects of drives, including networking and security
Handbook of Nanomaterials for Intelligent Sensing Applications provides insights into the production of nanosensors and their applications. The book takes an interdisciplinary approach, showing how nano-enhanced sensing technology is being used in a variety of industry sectors and addressing related challenges surrounding the production, fabrication and application of nanomaterials-based sensors at both experimental and theoretical levels. This book is an important reference source for materials scientists and engineers who want to learn more about how nanomaterials are being used to enhance sensing products and devices for a variety of industry sectors. The pof miniaturized device components and engineering systems of micro- and nanoscale is beyond the capability of conventional machine tools. The production of intelligent sensors at nanometer scale presents great challenges to engineers in design and manufacture. The manufacturing of nano-scaled devices and components involves isolation, transportation and re-assembly of atoms and molecules. This nanomachining technology involves not only physical-chemical processes as in the case of microfabrication, but it also involves application and integration of the principles of molecular biology. - Explains how the functionalization of nanomaterials is being used to create more effective sensors - Explores the major challenges of using nanoscale sensors for industrial applications on a broad scale - Assesses which classes of nanomaterial should best be used for sensing applications
Advanced Characterization of Nanostructured Materials — Probing the Structure and Dynamics with Synchrotron X-Rays and Neutrons is a collection of chapters which review the characterization of the structure and internal dynamics of a wide variety of nanostructured materials using various synchrotron X-ray and neutron scattering techniques. It is intended for graduate students and researchers who might be interested in learning about and applying these methods. The authors are well-known practitioners in their fields of research who provide detailed and authoritative accounts of how these techniques have been applied to study systems ranging from thin films and monolayers on solid surfaces and at liquid-air, liquid-liquid and solid-liquid interfaces; nanostructured composite materials; battery materials, and catalytic materials. While there have been a great many books published on nanoscience, there are relatively few that have discussed in one volume detailed synchrotron X-ray and neutron methods for advanced characterization of nanomaterials in thin films, composite materials, catalytic and battery materials and at interfaces. This book should provide an incentive and a reference for researchers in nanomaterials for using these techniques as a powerful way to characterize their samples. It should also help to popularize the use of synchrotron and neutron facilities by the nanoscience community.
The field of mechatronics integrates modern engineering science and technologies with new ways of thinking, enhancing the design of products and manufacturing processes. This synergy enables the creation and evolution of new intelligent human-oriented machines. The Handbook of Research on Advancements in Robotics and Mechatronics presents new findings, practices, technological innovations, and theoretical perspectives on the the latest advancements in the field of mechanical engineering. This book is of great use to engineers and scientists, students, researchers, and practitioners looking to develop autonomous and smart products and systems for meeting today’s challenges.
Soft materials with nanometer scale aspects have been heavily used in biomedical science. Instead of providing a broad introduction of soft materials and their biomedical applications, this book focuses on the preparation of molecular assemblies of biotechnologically relevant biomimetic systems with an emphasis on medical applications.