Download Free Hadronic Matrix Elements And Weak Decays Book in PDF and EPUB Free Download. You can read online Hadronic Matrix Elements And Weak Decays and write the review.

"The ultimate question of elementary particle physics is: What is the fundamental Lagrangian of nature surrounding us? The Lagrangian of the SM is very successful in describing nature at the currently available energy range. The discovery of the Higgs boson completed the particle spectrum of the SM and it is another proof of how well the SM works. Nevertheless the SM cannot be the end of the story and it is for sure not the fundamental Lagrangian of nature. The Lagrangian of the SM looses its validity at the latest at the Planck scale where gravitational effects become noticeable.Most physicists think of the SM as an effective theory that has to be replaced by a more fundamental theory above the TeV scale. What the word effective really means will hopefully be clear at later stages of our book. For the time being we will list some problems and open questions of the SM"--
This book introduces the phenomenology and theory of hadron form factors in a consistent manner, deriving step-by-step the key equations, defining the form factors from the matrix elements of hadronic transitions and deriving their symmetry relations. Explained are several general concepts of particle theory and phenomenology exemplified by hadron form factors. The main emphasis here is on learning the analytical methods in particle phenomenology. Many examples of hadronic processes involving form factors are considered, from the pion electromagnetic scattering to heavy B-meson decays. In the second part of the book, modern techniques of the form factor calculation, based on the method of sum rules in the theory of strong interactions, quantum chromodynamics, are introduced in an accessible manner. This book will be a useful guide for graduate students and early-career researchers working in the field of particle phenomenology and experiments. Features: • The first book to address the phenomenology of hadron form factors at a pedagogical level in one coherent volume • Contains up-to-date descriptions of the most important form factors of the electroweak transitions investigated in particle physics experiments
In 1947, the first of what have come to be known as "strange particles" were detected. As the number and variety of these particles proliferated, physicists began to try to make sense of them. Some seemed to have masses about 900 times that of the electron, and existed in both charged and neutral varieties. These particles are now called kaons (or K mesons), and they have become the subject of some of the most exciting research in particle physics. Kaon Physics at the Turn of the Millennium presents cutting-edge papers by leading theorists and experimentalists that synthesize the current state of the field and suggest promising new directions for the future study of kaons. Topics covered include the history of kaon physics, direct CP violation in kaon decays, time reversal violation, CPT studies, theoretical aspects of kaon physics, rare kaon decays, hyperon physics, charm: CP violation and mixing, the physics of B mesons, and future opportunities for kaon physics in the twenty-first century.
The first part of this two-part work is intended as an introduction to the fundamentals, while the second part discusses applications from the point of view of the researcher. Lively illustrations and informative tables, an overview at the beginning of each chapter and exercises with solutions make this book a valuable resource.
The study of neutrinos and their interaction with matter has made many important contributions to our present knowledge of physics. This advanced text introduces neutrino physics and presents a theoretical framework for describing relativistic particles. It gives a pedagogical description of the neutrino, its properties, the standard model of electroweak interactions, and neutrino scattering from leptons and nucleons. Focusing on the role of nuclear effects, the discussion extends to various processes of quasielastic, inelastic, and deep inelastic scattering from nucleons and nuclei. Neutrino sources, detection and oscillation, along with the role of neutrinos in astrophysics and motivation for the need of physics beyond the standard model are discussed in detail. This topical book will stimulate new ideas and avenues for research, and will form a valuable resource for advanced students and researchers working in the field of neutrino physics.
This volume is a collection of review articles on the most outstanding topics in heavy flavour physics. All the authors have made significant contributions to this field. The book reviews in detail the theoretical structure of heavy flavour physics within the Standard Model and its confrontation with existing experimental data.The physics of the top quark and of the Higgs play an important role in this volume. Beginning with radiative electroweak corrections and their impressive tests at LEP and hadron colliders, the book summarizes the present status of quark mixing, CP violation and rare decays. The dynamics of exclusive D- and B-meson decays, the τ-lepton physics and the newly discovered heavy quark symmetries are discussed in detail. The impact of strong interactions on weak decays is clearly visible in many articles. The physics of heavy flavours at LEP, HERA and hadron colliders constitutes an important part of the book. Another significant topic is the possible role of heavy flavours in the spontaneous symmetry breaking of gauge symmetries. Finally the most recent advances in lattice calculations of the properties of heavy flavours and the lattice studies of the dynamics of heavy flavours are presented.
Straddling the traditional disciplines of nuclear and particle physics, hadron physics is a vital and extremely active research area, as evidenced by a 2004 Nobel prize and new research facilities, such as that scheduled to open at CERN. Scientifically it is of vital importance in extrapolating our knowledge of quark-gluon physics at the sub-nucleon level to provide a wider perspective of strongly interacting hadrons, which make up the vast bulk of known matter in the Universe. Through detailed, pedagogical chapters contributed by key international experts, Hadron Physics maps out our contemporary knowledge of the subject. It covers both the theoretical and experimental aspects of hadron structure and properties along with a wide range of specific research topics, results, and applications. Providing a full picture of activity in the field, the book highlights three particular areas of current research: computational lattice hadron physics, the structure and dynamics of hadrons, and generalized parton distributions. It provides a solid introduction, includes background theory, and presents the current state of understanding of the subject.