Download Free Guide To Cytochromes Book in PDF and EPUB Free Download. You can read online Guide To Cytochromes and write the review.

This guide to the structure, function and mechanism of the cytochromes P450 focuses on the role of P450s in xenobiotic metabolism and toxicity. Colour illustrations show how modelling of P450s can rationalize their substrate specificity for the metabolism of both endogenous and exogenous chemicals.
Cytochromes are coloured iron-containing proteins that transfer electrons during cellular respiration and photosynthesis. The Cytochrome P450 family of enzymes catalyze reactions whereby water-insoluble drugs or metabolites, that would otherwise reach toxic levels in cell membranes, are rendered suitably water-soluble to leave the cell and be excreted in the urine. Due to the extensive nature of this subject, which is an area of intense scientific interest, the field is rapidly advancing and there is a need for new textbooks to keep abreast of the latest developments. The book fulfils that role in providing a fast-track approach for those coming into the P450 field, either at postgraduate level or in particular within the pharmaceutical industry. A Guide to Cytochrome P450 Structure and Function acts as an adjunct to the previous book Cytochromes P450: Structure, Function and Mechanism. It reviews the current status of the P450 field in terms of our present knowledge and understanding of the enzymes structure and function, including their multiplicity of forms, diversity of substrates, and selectivity. This is brought together with the latest research topics, including pharmacogenetics, regulation, human DMEs, toxicity screening and molecule modeling, to provide a fast-track approach for those new to the field.
Cytochromes P450: Metabolic and Toxicological Aspects examines cytochrome P450 proteins and their role in toxicity/carcinogenicity and the metabolism of foreign chemicals. Studying the function of these proteins enables us to: Predict the pathways and outcome of chemical metabolism to rationalize species, sex, and age differences in toxicity Anticipate drug interactions Modify doses to fit the needs of patients Contributions from internationally acknowledged experts are organized into three sections. The first section provides an overview, the next profiles each of the cytochrome P450 families and subfamilies involved in chemical metabolism, and the last section discusses new issues and developments of current interest. This detailed and thorough examination of cytochrome P450 will be a useful source for research scientists, especially those working in the pharmaceutical industry, dealing with the safety evaluation of chemicals and the study of their metabolism, pharmacokinetics, and toxicological properties.
A clear, straightforward resource to guide you through preclinical drug development Following this book's step-by-step guidance, you can successfully initiate and complete critical phases of preclinical drug development. The book serves as a basic, comprehensive reference to prioritizing and optimizing leads, dose formulation, ADME, pharmacokinetics, modeling, and regulations. This authoritative, easy-to-use resource covers all the issues that need to be considered and provides detailed instructions for current methods and techniques. Each chapter is written by one or more leading experts in the field. These authors, representing the many disciplines involved in preclinical toxicology screening and testing, give you the tools needed to apply an effective multidisciplinary approach. The editor has carefully reviewed all the chapters to ensure that each one is thorough, accurate, and clear. Among the key topics covered are: * Modeling and informatics in drug design * Bioanalytical chemistry * Absorption of drugs after oral administration * Transporter interactions in the ADME pathway of drugs * Metabolism kinetics * Mechanisms and consequences of drug-drug interactions Each chapter offers a full exploration of problems that may be encountered and their solutions. The authors also set forth the limitations of various methods and techniques used in determining the safety and efficacy of a drug during the preclinical stage. This publication should be readily accessible to all pharmaceutical scientists involved in preclinical testing, enabling them to perform and document preclinical safety tests to meet all FDA requirements before clinical trials may begin.
With contributions by a team of internationally respected scientists, this book provides up-to-date information on the extensively studied cytochrome P450 enzyme in a very accessible manner.
Cytochrome P450: Structure, Mechanism, and Biochemistry, third edition is a revision of a review that summarizes the current state of research in the field of drug metabolism. The emphasis is on structure, mechanism, biochemistry, and regulation. Coverage is interdisciplinary, ranging from bioinorganic chemistry of cytochrome P450 to its relevance in human medicine. Each chapter provides an in-depth review of a given topic, but concentrates on advances of the last 10 years.
This book presents a clear and precise discussion of the biochemistry of eukaryotic cells, particularly those of mammalian tissues, relates biochemical events at a cellular level to the subsequent physiological processes in the whole animal, and cites examples of abnormal biochemical processes in human disease. The organization and content are tied together to provide students with the complete picture of biochemistry and how it relates to human diseases.
This book describes in 13 chapters mechanisms of P450 used to monooxygenate substrates via the NAD(P)H/O2 pathway using its peroxidase and peroxygenase functions. P450 also utilizes peroxides, peracids, periodate and iodosobenzene to oxygenate substrates via the shunt pathway. Also described are mechanisms used in the oxidation of pharmaceuticals by CYP3A4; acyl- carbon cleavage by CYP17A1, CYP19A1 and CYP51A1; metabolism of tetrabromodiphenyl ethers and bile acids by CYP2B6 and CYP3A4; metabolism of ω-6 and ω-3 polyunsaturated fatty acids; H2O2-mediated peroxygenation of substrates using substrate misrecognition; P450 oxidative reactions using electrochemical methods; electron transfer to P450 by redox proteins; hydroxylation of 1,8-cineole by P450cin; and peroxygenation by unspecific peroxygenases using H2O2. The topics covered are relevant to P450 researchers, professors and students from a variety of disciplines ranging from pharmacology, toxicology and microbiology to chemistry.
Written as an advanced text for toxicology students, this book is much more than an introduction and provides in-depth information describing the underlying mechanisms through which toxicants produce their adverse responses. • Links traditional toxicology to modern molecular techniques, important for teaching to graduate courses and professional studies • Uses a didactic approach with basic biological or theoretical background for the methodology presented • Brings together and comprehensively covers a range of dynamic aspects in biochemical and molecular toxicology • Guides student and professional toxicologists in comprehending a broad range of issues, compiled and authored by a diverse group of experts • “A good introductory textbook covering the biochemical toxicology of organic substances and the relevant methodology in some detail.... It offers good value for money and can be recommended as a textbook for appropriate courses” – BTS Newsletter review of the 4th edition