Download Free Guaranteed Accuracy In Numerical Linear Algebra Book in PDF and EPUB Free Download. You can read online Guaranteed Accuracy In Numerical Linear Algebra and write the review.

There exists a vast literature on numerical methods of linear algebra. In our bibliography list, which is by far not complete, we included some monographs on the subject [46], [15], [32], [39], [11], [21]. The present book is devoted to the theory of algorithms for a single problem of linear algebra, namely, for the problem of solving systems of linear equations with non-full-rank matrix of coefficients. The solution of this problem splits into many steps, the detailed discussion of which are interest ing problems on their own (bidiagonalization of matrices, computation of singular values and eigenvalues, procedures of deflation of singular values, etc. ). Moreover, the theory of algorithms for solutions of the symmetric eigenvalues problem is closely related to the theory of solv ing linear systems (Householder's algorithms of bidiagonalization and tridiagonalization, eigenvalues and singular values, etc. ). It should be stressed that in this book we discuss algorithms which to computer programs having the virtue that the accuracy of com lead putations is guaranteed. As far as the final program product is con cerned, this means that the user always finds an unambiguous solution of his problem. This solution might be of two kinds: 1. Solution of the problem with an estimate of errors, where abso lutely all errors of input data and machine round-offs are taken into account. 2.
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
Full of features and applications, this acclaimed textbook for upper undergraduate level and graduate level students includes all the major topics of computational linear algebra, including solution of a system of linear equations, least-squares solutions of linear systems, computation of eigenvalues, eigenvectors, and singular value problems. Drawing from numerous disciplines of science and engineering, the author covers a variety of motivating applications. When a physical problem is posed, the scientific and engineering significance of the solution is clearly stated. Each chapter contains a summary of the important concepts developed in that chapter, suggestions for further reading, and numerous exercises, both theoretical and MATLAB and MATCOM based. The author also provides a list of key words for quick reference. The MATLAB toolkit available online, 'MATCOM', contains implementations of the major algorithms in the book and will enable students to study different algorithms for the same problem, comparing efficiency, stability, and accuracy.
Mathematics of Computing -- Numerical Analysis.
This well-organized text provides a clear analysis of the fundamental concepts of numerical linear algebra. It presents various numerical methods for the basic topics of linear algebra with a detailed discussion on theory, algorithms, and MATLAB implementation. The book provides a review of matrix algebra and its important results in the opening chapter and examines these results in the subsequent chapters. With clear explanations, the book analyzes different kinds of numerical algorithms for solving linear algebra such as the elimination and iterative methods for linear systems, the condition number of a matrix, singular value decomposition (SVD) of a matrix, and linear least-squares problem. In addition, it describes the Householder and Givens matrices and their applications, and the basic numerical methods for solving the matrix eigenvalue problem. Finally, the text reviews the numerical methods for systems and control. Key Features Includes numerous worked-out examples to help students grasp the concepts easily.  Provides chapter-end exercises to enable students to check their comprehension of the topics discussed.  Gives answers to exercises with hints at the end of the book.  Uses MATLAB software for problem-solving. Primarily designed as a textbook for postgraduate students of Mathematics, this book would also serve as a handbook on matrix computations for scientists and engineers.
One of the main ways by which we can understand complex processes is to create computerised numerical simulation models of them. Modern simulation tools are not used only by experts, however, and reliability has therefore become an important issue, meaning that it is not sufficient for a simulation package merely to print out some numbers, claiming them to be the desired results. An estimate of the associated error is also needed. The errors may derive from many sources: errors in the model, errors in discretization, rounding errors, etc. Unfortunately, this situation does not obtain for current packages and there is a great deal of room for improvement. Only if the error can be estimated is it possible to do something to reduce it. The contributions in this book cover many aspects of the subject, the main topics being error estimates and error control in numerical linear algebra algorithms (closely related to the concept of condition numbers), interval arithmetic and adaptivity for continuous models.
Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.
Enabling Technologies for Computational Science assesses future application computing needs, identifies research directions in problem-solving environments (PSEs), addresses multi-disciplinary environments operating on the Web, proposes methodologies and software architectures for building adaptive and human-centered PSEs, and describes the role of symbolic computing in scientific and engineering PSEs. The book also includes an extensive bibliography of over 400 references. Enabling Technologies for Computational Science illustrates the extremely broad and interdisciplinary nature of the creation and application of PSEs. Authors represent academia, government laboratories and industry, and come from eight distinct disciplines (chemical engineering, computer science, ecology, electrical engineering, mathematics, mechanical engineering, psychology and wood sciences). This breadth and diversity extends into the computer science aspects of PSEs. These papers deal with topics such as artificial intelligence, computer-human interaction, control, data mining, graphics, language design and implementation, networking, numerical analysis, performance evaluation, and symbolic computing. Enabling Technologies for Computational Science provides an assessment of the state of the art and a road map to the future in the area of problem-solving environments for scientific computing. This book is suitable as a reference for scientists from a variety of disciplines interested in using PSEs for their research.
This book is a liber amicorum to Professor Sergei Konstantinovich Godunov and gathers contributions by renowned scientists in honor of his 90th birthday. The contributions address those fields that Professor Godunov is most famous for: differential and difference equations, partial differential equations, equations of mathematical physics, mathematical modeling, difference schemes, advanced computational methods for hyperbolic equations, computational methods for linear algebra, and mathematical problems in continuum mechanics.