Download Free Ground Water And Vadose Zone Monitoring Book in PDF and EPUB Free Download. You can read online Ground Water And Vadose Zone Monitoring and write the review.

The world's first nuclear bomb was a developed in 1954 at a site near the town of Los Alamos, New Mexico. Designated as the Los Alamos National Laboratory (LANL) in 1981, the 40-square-mile site is today operated by Log Alamos National Security LLC under contract to the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Like other sites in the nation's nuclear weapons complex, the LANL site harbors a legacy of radioactive waste and environmental contamination. Radioactive materials and chemical contaminants have been detected in some portions of the groundwater beneath the site. Under authority of the U.S. Environmental Protection Agency, the State of New Mexico regulates protection of its water resources through the New Mexico Environment Department (NMED). In 1995 NMED found LANL's groundwater monitoring program to be inadequate. Consequently LANL conducted a detailed workplan to characterize the site's hydrogeology in order to develop an effective monitoring program. The study described in Plans and Practices for Groundwater Protection at the Los Alamos National Laboratory: Final Report was initially requested by NNSA, which turned to the National Academies for technical advice and recommendations regarding several aspects of LANL's groundwater protection program. The DOE Office of Environmental Management funded the study. The study came approximately at the juncture between completion of LANL's hydrogeologic workplan and initial development of a sitewide monitoring plan.
A synthesis of years of interdisciplinary research and practice, the second edition of this bestseller continues to serve as a primary resource for information on the assessment, remediation, and control of contamination on and below the ground surface. Practical Handbook of Soil, Vadose Zone, and Ground-Water Contamination: Assessment, Prev
Vadose Zone Processes provides a unified, up-to-date treatment on the movement of water through unsaturated media. In addition to covering the basic equations governing the flow and fate of water in unsaturated media, the text covers the biogeochemistry of vadose environments and the statistical description of vadose processes. The authors emphasize maintaining an intuitive understanding of how the results are derived and how they are appropriately applied. This comprehensive and important book will be useful not only to those in traditional fields such as civil engineering, geology, crop science, chemical engineering, agricultural engineering, and hydrology but also in the newer environmental engineering fields including containment transport, pollution remediation, and waste disposal.
Vadose Zone Hydrology describes the elements of the physical processes most often encountered by hydrogeologists and ground-water engineers in their vadose zone projects. It illustrates the application of soil physics to practical problems relevant to the characterization and monitoring of the vadose zone. It includes an introduction to physical processes, including basic flow theory, and provides examples of important field-scale processes that must be recognizable by hydrogeologists. Considerable attention is given to the concepts of recharge, including how it is most accurately evaluated in the vadose zone. Field and laboratory methods for characterizing hydraulic properties in the vadose zone are also covered, and case studies illustrating these methods are provided. New and emerging technologies for monitoring the vadose zone, particularly for the purpose of detecting contaminants, are highlighted. In the last section of the book, additional case studies are presented, demonstrating applications related to seepage detection, landfill monitoring, and soil gas investigations. This book is written from the perspective of hydrogeologists and is designed to be directly applicable and to maintain continuity and consistency between chapters. It will be an invaluable primer for environmental or geotechnical consultants, regulators, or students who have no prior formal academic training in unsaturated flow concepts. Because the text contains some of the latest advances in this field, it will be an excellent reference for geologists and engineers currently working on problems of vadose zone hydrology.
This book is written in a simple, straightforward manner without complicated mathematical derivatives. Compiled by experienced practitioners, this guide covers topics such as basic principles of vadose zone hydrology and prevalent monitoring techniques. Case studies present actual field experiences for the benefit of the reader. The Handbook provides practitioners with the information they need to fully understand the principles, advantages, and limitations of the monitoring techniques that are available. The Handbook of Vadose Zone Characterization & Monitoring expands and consolidates the useful and succint information contained in various ASTM documents, EPA manuals, and other similar texts on the subject, making it an invaluable aid to new practioners and a useful reference for seasoned veterans in the field.
Published in 1991, the first edition of The Practical Handbook of Ground-Water Monitoring quickly became the gold standard reference on the topic of ground-water monitoring. But, as in all rapidly evolving fields, regulations change, technology advances, methods improve, and research reveals flaws in prior thinking. As a consequence, books that document the state of the science, even widely acknowledged definitive works, become outdated and need to be rewritten periodically to stay current. Reflecting this and renamed to highlight its wider scope, The Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring, Second Edition provides an updated look at the field. Completely revised, the book contains so much new information that it has doubled in size. Containing the most up-to-date information available, this second edition emphasizes the practical application of current technology. It covers environmental site characterization and ground-water monitoring in great detail, from the federal regulations that govern environmental investigations, to the various direct and indirect methods of investigating and monitoring the subsurface, to the analysis and interpretation of complex sets of environmental data. Cheaper, better, faster was the mantra of the 1990s, resulting in more streamlined approaches to both environmental site characterization and ground-water monitoring, but also pitting the application of good science against the mandate to get a project done as quickly and inexpensively as possible. This book provides unbiased, technical discussions of the tremendously powerful tools developed in the last decade, helping environmental professionals strike a balance between good science and economics.
Vadose Zone Hydrology describes the elements of the physical processes most often encountered by hydrogeologists and ground-water engineers in their vadose zone projects. It illustrates the application of soil physics to practical problems relevant to the characterization and monitoring of the vadose zone. It includes an introduction to physical processes, including basic flow theory, and provides examples of important field-scale processes that must be recognizable by hydrogeologists. Considerable attention is given to the concepts of recharge, including how it is most accurately evaluated in the vadose zone. Field and laboratory methods for characterizing hydraulic properties in the vadose zone are also covered, and case studies illustrating these methods are provided. New and emerging technologies for monitoring the vadose zone, particularly for the purpose of detecting contaminants, are highlighted. In the last section of the book, additional case studies are presented, demonstrating applications related to seepage detection, landfill monitoring, and soil gas investigations. This book is written from the perspective of hydrogeologists and is designed to be directly applicable and to maintain continuity and consistency between chapters. It will be an invaluable primer for environmental or geotechnical consultants, regulators, or students who have no prior formal academic training in unsaturated flow concepts. Because the text contains some of the latest advances in this field, it will be an excellent reference for geologists and engineers currently working on problems of vadose zone hydrology.