Download Free Ground Based Microwave Radiometry And Remote Sensing Book in PDF and EPUB Free Download. You can read online Ground Based Microwave Radiometry And Remote Sensing and write the review.

The ability to effectively monitor the atmosphere on a continuous basis requires remote sensing in microwave. Written for physicists and engineers working in the area of microwave sensing of the atmosphere, Ground-Based Microwave Radiometry and Remote Sensing: Methods and Applications is completely devoted to ground-based remote sensing. This text
The ability to effectively monitor the atmosphere on a continuous basis requires remote sensing in microwave. Written for physicists and engineers working in the area of microwave sensing of the atmosphere, Ground-Based Microwave Radiometry and Remote Sensing: Methods and Applications is completely devoted to ground-based remote sensing. This text covers the fundamentals of microwave remote sensing, and examines microwave radiometric measurements and their applications. The book discusses the atmospheric influences on the electromagnetic spectrum, addresses the measurement of incoherent electromagnetic radiation from an object obeying the laws of radiation fundamentals, and explores the height limits in both the water vapor band and the oxygen band. The author describes the measurement technique of water vapor in the polar region, details studies of the measurement of integrated water vapor content by deploying a microwave radiometer, and presents several real-time pictures of radiometric and disdrometer measurements. Includes integrated water vapor and cloud liquid water models Contains measurements in adverse weather conditions Illustrates measurement technique in the Antarctic and Arctic regions Describes rain models in different locations including tropical, temperate regions along with radiometric measurement techniques Presents a definite model for measurement of propagation path delay The book summarizes the latest research results obtained in the area of measurements and modeling, describes the atmospheric influences on electromagnetic spectrum along with different gaseous and cloud models, and provides examples of radiometric retrievals from a variety of dynamic weather phenomena.
A rapidly growing area, remote sensing is crucial to the effort of modeling the earth's atmosphere and collecting such fundamental data as temperature, winds, pressures, water vapor distribution, clouds and other active constituents. This information enables us to test existing models of the atmosphere's energy balance, depletion of the ozone layer, climatic trends and other essential environmental data. Also discussed is the application of microwave remote sensing techniques to the atmospheres of planets other than the earth.
This book contains a selection of refereed papers presented at the 6 Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment held in Florence, Italy on March 15-18, 1999. Over the last two decades, passive microwave remote sensing has made considerable progress, and has achieved significant results in the study of the Earth's surface and atmosphere. Many years of observations with ground-based and satellite-borne sensors have made an important contribution to improving our knowledge of many geophysical processes of the Earth's environment and of global changes. The evolution in microwave radiometers aboard satellites has increased steadily over recent years. At the same time, many investigations have been carried out both to improve the algorithms for the retrieval of geophysical parameters and to develop new technologies. The book is divided into four main sections: three of these are devoted to the observation of the Earth's surface and atmosphere, and the fourth, to future missions and new technologies. The first section deals with the study of sea and land surfaces, and reports recent advances in remote sensing of ocean wind, sea ice, soil moisture and vegetation biomass, including electromagnetic modelling and the assimilation of radiometric data in models of land surface processes. The following two sections are devoted to the measurement of atmospheric quantities which are of fundamental importance in climatology and meteorology, and, since they influence radio-wave propagation, they also impact on several other fields, including geodesy, navigational satellite and radioastronomy. The last section presents an overview of new technologies and plans for future missions.
Combines theoretical concepts with experimental results on thermal microwave radiation to increase the understanding of the complex nature of terrestrial media. Emphasising on radiative transfer models, this book covers the terrestrial aspects, from clear to cloudy atmosphere, precipitation, ocean and land surfaces, vegetation, snow and ice.
2-10.3 Multiple Reflection Method
No detailed description available for "Passive Microwave Remote Sensing of Land-Atmosphere Interactions".
This volume contains a collection of refereed papers which were presented at the Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, 14--17 February 1994, Rome, Italy. The last decade has marked a period of steady advancement and new developments in the observation of the terrestrial environment by passive microwave sensors. Both ground-based and satellite-borne systems have improved their accuracy, stability and spatial resolution and are providing a wealth of quantitative data, which are increasingly being employed in application-oriented projects. The contributions in this volume cover different fields of applications of microwave radiometry, the various observation and retrieval techniques and the recent technological developments. The articles are divided into four sections: measurement of atmospheric water vapor and cloud liquid, measurement of rain, observation of the surface, and new radiometric systems.
Atmospheric water plays a key role in climate. Water vapour is the most important greenhouse gas and its condensed forms exert a profound influence on both incoming solar and outgoing infrared radiation. Unfortunately, accurate, height-resolved global-scale measurements of atmospheric humidity are difficult to obtain. The change in concentration of five orders of magnitude form the ground to the stratosphere means there is no standard instrument that will measure everywhere. This has led to different measuring techniques, all with strengths and weaknesses. This book assesses all presently available techniques that are used in monitoring networks. Special weight is given to presenting the different technical concepts, the accuracy of different sensor types, addresses calibration issues and retrieval aspects.
Introduction to Microwave Remote Sensing offers an extensive overview of this versatile and extremely precise technology for technically oriented undergraduates and graduate students. This textbook emphasizes an important shift in conceptualization and directs it toward students with prior knowledge of optical remote sensing: the author dispels any linkage between microwave and optical remote sensing. Instead, he constructs the concept of microwave remote sensing by comparing it to the process of audio perception, explaining the workings of the ear as a metaphor for microwave instrumentation. This volume takes an “application-driven” approach. Instead of describing the technology and then its uses, this textbook justifies the need for measurement then explains how microwave technology addresses this need. Following a brief summary of the field and a history of the use of microwaves, the book explores the physical properties of microwaves and the polarimetric properties of electromagnetic waves. It examines the interaction of microwaves with matter, analyzes passive atmospheric and passive surface measurements, and describes the operation of altimeters and scatterometers. The textbook concludes by explaining how high resolution images are created using radars, and how techniques of interferometry can be applied to both passive and active sensors.