Download Free Green Approaches To Asymmetric Catalytic Synthesis Book in PDF and EPUB Free Download. You can read online Green Approaches To Asymmetric Catalytic Synthesis and write the review.

Nowadays, chirality is widely accepted as an important factor in molecular recognition processes and the biological activity of many pharmaceutical drugs and agrochemicals; this is confirmed by the continuous need for synthetic methods which lead to single or enriched enantiomers of such compounds. By presenting a review of the various and more recently developed approaches for both metal-transition and organocatalysis, this volume describes the development of “greener” asymmetric reactions which preserve stereoselectivity. The author summarizes the impressive amount of research that has been gathered within this field into three chapters focusing on: i)the search of alternative catalysts, ii) alternative solvents, and iii) alternative synthetic strategies and processes. For each topic, the fundamentals and some valuable applications are discussed.
This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milestones in organocatalytic, enzymatic and metal-based mediated asymmetric synthesis, including applications for the synthesis of biologically active molecules. Written by leading international experts, this book consists of 16 chapters with 2000 References and illustrations of 560 schemes and figures.
This book focuses on different techniques of asymmetric synthesis of important compounds, such as drugs and natural products. It gives insightful information on recent asymmetric synthesis by Inorganic, Organic and Enzymatic combinations. It also emphasizes chiral compounds and design of new catalyst for synthesis of compounds.
This book presents important developments and applications of green chemistry, especially in the field of organic chemistry. The chapters give a brief account of green organic reactions in water, green organic reactions using microwave and in solvent-free conditions. In depth discussions on the green aspects of ionic liquids, flow reactions, and recoverable catalysts are provided in this book. An exclusive chapter devoted to green Lewis acid is also included. The potential of supercritical fluids as green solvents in various areas of organic reactions is explained as well. This book will be a valuable reference for beginners as well as advanced researchers interested in green organic chemistry.
Considering the challenge of sustainability facing our society in the coming decades, catalysis is without any doubt a research area of major importance. In this regard, asymmetric organocatalysis, now considered a pillar of green chemistry, deserves particular attention. The first chapter of this volume examines the topic of asymmetric organocatalysis in light of radical chemistry. Recent important progress in this field has been attained by promoting the formation and harnessing the high reactivity of open-shell intermediates. Merging organocatalysis with radical chemistry has been the key to solving some longstanding bottlenecks, and has also significantly contributed to reinforcing the key role of organocatalysis in asymmetric catalysis. This chapter presents the most significant developments in this area, with a particular focus on asymmetric SOMO- and photoredox-organocatalyzed transformations. Chapter 2 focuses on quaternary ammonium salts (R4N+X-), especially chiral derivatives, and their behavior as unique catalysts in organocatalysis. Forming chiral ion-pairs capable of promoting asymmetric reactions, they also operate as unique "transporters involved in phase transfer catalytic processes between liquid–liquid or liquid–solid systems. Furthermore, they offer unique opportunities when forming cooperative ion-paired entities R4N+X-, allowing a synergistic implication of the counter-ion X- either as Brønsted bases or Lewis bases. Specific design of such chiral catalysts in modern chemistry and better insight into their mode of activation facilitates efficient and unprecedented chemical transformations. This chapter provides an overview of the use of chiral quaternary ammonium salts in organocatalysis, emphasizing both general mechanistic aspects and the scope of this approach. - Presents the most significant developments with a particular focus on asymmetric SOMO- and photoredox-organocatalyzed transformations - Givies a larger overview of chiral ammonium salts in organocatalysis rather than a specific review dedicated to specialists in this area - Affords a historical evolution of this field of research
Immobilization of chiral catalysts is an important tool for improving overall efficiency of catalytic processes. However, heterogeneous catalysts often suffer from decreased activities and supported but still homogeneous catalysts can help overcome this issue. This book covers the most important concepts of homogeneous supported catalysis with an emphasis on enantioselective processes. It describes the state-of-the-art and latest developments in each area whilst critically evaluating the strengths and weaknesses of this important method. The book encompasses ionically-tagged catalysts, supported organocatalysts, supported ionic liquid phases, catalysis using soluble polymers, catalytic dendrimers, fluorous catalysts, water soluble catalysts and non-covalent immobilization methods. Potential developments and ideas for the future are also highlighted. There is a growing demand for effective and recyclable catalysts so this book, covering all the important methods in the field of supported homogeneous catalysis, will appeal to many researchers in academia and industry.
Catalysis plays a vital role in chemical, petroleum, agriculture, polymer, electronics, pharmaceutical, and other industries. Over 90 percent of chemicals originate from catalytic processes. Toughening economic and environmental constraints have proven to be a challenge for meeting the demand of novel efficient and sustainable regio- and stereoselective catalyst systems. Environmentally Sustainable Catalytic Asymmetric Oxidations provides a comprehensive overview of existing ecologically friendly catalyst systems for various asymmetric oxidation processes. Topics include: A survey of existing transition metal-based catalyst systems for asymmetric epoxidations (AEs) with O2 and H2O2 Asymmetric sulfoxidations with H2O2 on chiral metal complexes An overview of various transition metal-catalyzed oxidative transformations with H2O2 or O2 used as the terminal oxidant Organocatalytic asymmetric oxidations Catalytic processes of stereospecific oxidations of C-H functional groups The role that oxoiron(V) intermediates play in chemo- and stereoselective oxidations catalyzed by non-heme iron complexes The book concludes with a discussion of the opportunities and problems associated with the industrial application of stereoselective processes of catalytic oxidation with H2O2 and O2. It also provides examples of processes with industrial potential. Some of the catalysts presented in this book may serve as promising alternatives for existing catalysts—progressively replacing them in manufacturing processes and ultimately making the chemical industry greener and cleaner.
This book provides an excellent overview on state-of-the-art of modern organocatalysis. It presents the contributions from leading experts, with backgrounds in academia and industry, to an Ernst Schering Research Foundation Symposium held in April 2007. It will be of interest to those who want a general overview of the topic, but also to those who want to learn more about the state-of-the-art, current trends and perspectives in this highly dynamic field of research.