Download Free Graphical Calculus Book in PDF and EPUB Free Download. You can read online Graphical Calculus and write the review.

The esteemed author team is back with a fourth edition of Calculus: Graphing, Numerical, Algebraic written specifically for high school students and aligned to the guidelines of the AP(R) Calculus exam. The new edition focuses on providing enhanced student and teacher support; for students, the authors added guidance on the appropriate use of graphing calculators and updated exercises to reflect current data. For teachers, the authors provide lesson plans, pacing guides, and point-of-need answers throughout the Teacher's Edition and teaching resources. Learn more.
This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery graph TQFT derived from the center of that category. The book is of interest to researchers and students studying topological field theory, monoidal categories, Hopf algebras and Hopf monads.
This book constitutes the refereed proceedings of the 4th International Workshop on Reversible Computation, RC 2012, held in Copenhagen, Denmark, in July 2012. The 19 contributions presented in this volume were carefully reviewed and selected from 46 submissions. The papers cover theoretical considerations, reversible software and reversible hardware, and physical realizations and applications in quantum computing.