Download Free Graphene And Other 2d Layered Nanomaterials And Hybrid Structures Book in PDF and EPUB Free Download. You can read online Graphene And Other 2d Layered Nanomaterials And Hybrid Structures and write the review.

This book is dedicated to highlighting some relevant advances in the field of thin films and coatings based on two-dimensional crystals and layered nanomaterials. Due to their layered structure, graphene and a variety of new 2D inorganic nanosystems, called “graphene analogues”, have all attracted tremendous interest due to their unprecedented properties/superior performance, and may find applications in many fields from electronics to biotechnology. These two-dimensional systems are ultrathin and, hence, tend to be flexible, also presenting distinctive and nearly intrinsic characteristics, including electronic, magnetic, optical, thermal conductivity, and superconducting properties. Furthermore, the combination of different structures and synergetic effects may open new and unprecedented perspectives, making these ideal advanced materials for multifunctional assembled systems. As far as the field of coatings is concerned, new layered nanostructures may offer unique and multifunctional properties, including gas barrier, lubricant, conductive, magnetic, photoactive, self-cleaning, and/or antimicrobial surfaces. This book contains new findings on the synthesis and perspectives of multifunctional films that are at the forefront of the science and coating technologies.
Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials, electronic, photonic, and optoelectronic applications, as well as future plans for improving performance, no modern book covers as much ground. The planned book will fill such gaps by offering a comprehensive analysis of two-dimensional semiconducting materials. This book covers a range of advanced 2D materials, their fundamentals, and the chemistry for many emerging applications. All the chapters are covered by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries. • Covers topics such as fundamentals and advanced knowledge of two-dimensional semiconducting materials • Provides details about the recent methods used for the synthesis, characterization, and applications of two-dimensional semiconducting materials • Covers the state-of-the-art development in two-dimensional semiconducting materials and their emerging applications This book provides directions to students, scientists, and researchers in semiconductors and related disciplines to help them better understand the physics, characteristics, and applications of 2D semiconductors.
Two-dimensional materials have had widespread applications in nanoelectronics, catalysis, gas capture, water purification, energy storage and conversion. Initially based around graphene, research has since moved on to looking at alternatives, including transitions metal dichalcogenides, layered topological insulators, metallic mono-chalcogenides, borocarbonitrides and phosphorene.This book provides a review of research in the field of these materials, including investigation into their defects, analysis on hybrid structures focusing on their properties and synthesis, and characterization and applications of 2D materials beyond graphene. It is designed to be a single-point reference for students, teachers and researchers of chemistry and its related subjects, particularly in the field of nanomaterials.
Two Dimensional Nanostructures for Biomedical Technology: A Bridge between Materials Science and Bioengineering helps researchers to understand the promising aspects of two dimensional nanomaterials. Sections cover the biomedical applications of such nanostructures in terms of their precursors, structures, morphology and size. Further, detailed synthetic methodologies guide the reader towards the efficient generation of two dimensional nanostructures. The book encompasses the vital aspects of two dimensional nanomaterials in context of their utility in biomedical technology, thus presenting a thorough guide for researchers in this area. - Details the latest on the structure, morphology and shape-size accords of two dimensional nanomaterials - Includes synthetic strategies with feasibility for sustainability - Reports on two dimensional nanostructures in biomedical technology, including bio-imaging, biosensing, drug delivery and tissue engineering
In recent years, micro- and nanosystems with magnetic properties have been extensively investigated in many fields, ranging from physics to medicine. The research in these areas has lately shown that if the magnetic compounds are opportunely functionalized and modified with moieties and specific functional groups, a plethora of challenging multidisciplinary applications is available, including the development of magnetically controlled particles, stimuli-responsive materials, magnetically guided chemical/drug-delivery systems, sensors, spintronics, separation and purification of contaminated groundwater and soils, ferrofluids and magnetorheological fluids, contrast agents for MRI, and internal sources of heat for the thermoablation of cancer. Magnetic compounds have been found to be highly selective and effective in all these application fields, from the molecular level to the microscale. This book aims at underlining the latest advances in the field of magnetic compounds, nanosystems, and materials, covering a large variety of topics related to novel synthesis and functionalization methods and the properties, applications, and use of magnetic systems in chemistry, materials science, diagnostics, and medical therapy.
This book discusses the functional ink systems of graphene and related two-dimensional (2D) layered materials in the context of their formulation and potential for various applications, including in electronics, optoelectronics, energy, sensing, and composites using conventional graphics and 3D printing technologies. The authors explore the economic landscape of 2D materials and introduce readers to fundamental properties and production technologies. They also discuss major graphics printing technologies and conventional commercial printing processes that can be used for printing 2D material inks, as well as their specific strengths and weaknesses as manufacturing platforms. Special attention is also paid to scalable production methods for ink formulation, making this an ideal book for students and researchers in academia or industry, who work with functional graphene and other 2D material ink systems and their applications. Explains the state-of-the-art 2D material production technologies that can be manufactured at the industrial scale for functional ink formulation; Provides starting formulation examples of 2D material, functional inks for specific printing methods and their characterization techniques; Reviews existing demonstrations of applications related to printed 2D materials and provides possible future development directions while highlighting current knowledge gaps; Gives a snapshot and forecast of the commercial market for printed GRMs based on the current state of technologies and existing patents.
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.
Black phosphorus (BP)-based two-dimensional (2D) nanomaterials are used as components in practical industrial applications in biomedicine, electronics, and photonics. There is a need to controllably shape engineered scalable structures of 2D BP building blocks, and their assembly/organization is desired for the formation of three-dimensional (3D) forms such as macro and hybrid architectures, as it is expected that these architectures will deliver even better materials performance in applications. Semiconducting Black Phosphorus: From 2D Nanomaterial to Emerging 3D Architecture provides an overview of the various synthetic strategies for 2D BP single-layer nanomaterials, their scalable synthesis, properties, and assemblies into 3D architecture. The book  covers defect engineering and physical properties of black phosphorous;  describes different strategies for the development of 2D nanostructures of BP with other species such as polymers, organic molecules, and other inorganic materials;  offers a comparative study of 3D BP structures with other 3D architectures such as dichalcogenides (TMDs, graphene, and boron nitride); and  discusses in detail applications of 3D macrostructures of BP in various fields such as energy, biomedical, and catalysis. This is an essential reference for researchers and advanced students in materials science and chemical, optoelectronic, and electrical engineering.
Two-dimensional (2D) materials for photocatalytic applications have attracted attention in recent years due to their unique thickness-dependent physiochemical properties. 2D materials offer enhanced functionality over traditional three-dimensional (3D) photocatalysts due to modified chemical composition and electronic structures, as well as abundant surface active sites. This book reviews the applications of 2D-related nano-materials in solar-driven catalysis, providing an up-to-date introduction to the design and use of 2D-related photo(electro)catalysts. This includes not only application areas such as fine chemicals synthesis, water splitting, CO2 reduction, and N2 fixation, but also catalyst design and preparation. Some typical 2D and 2D-related materials (such as layered double hydroxides (LDHs), layered metal oxides, transition metal dichalcogenide (TMDs), metal–organic frameworks (MOFs), graphene, g-C3N4, etc.) are classified, and relationships between structure and property are demonstrated, with emphasis on how to improve 2D-related materials performance for practical applications. While the focus of this book will primarily be on experimental studies, computational results will serve as a necessary reference. With chapters written by expert researchers in their fields, Photocatalysis Using 2D Nanomaterials will provide advanced undergraduates, postgraduates and other researchers convenient introductions to these topics.
This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.