Download Free Graphene And Its Fascinating Attributes Book in PDF and EPUB Free Download. You can read online Graphene And Its Fascinating Attributes and write the review.

Graphene, a single sheet of graphite, has an unconventional electronic structure that can be described in terms of massless Dirac Fermions. This interesting electronic feature is not only an important fundamental issue in condensed matter physics but also holds future promise in post-Si electronic/spintronics device applications.Graphene is the most fundamental building block, with which a variety of carbon-based materials such as graphite, fullerene and carbon nanotubes can be created. The diverse chemical, electronic and magnetic properties of nanographene and graphene are mainly due to their geometrical electronic structure. This book presents the frontiers of graphene research ranging from important issues in condensed matter physics and chemistry to advanced device applications.
Graphene, a single sheet of graphite, has an unconventional electronic structure that can be described in terms of massless Dirac Fermions. This book presents the frontiers of graphene research ranging from important issues in condensed matter physics and chemistry to advanced device applications.
Graphene is an ultimately monolayer material with single-atom thickness. It possesses many fascinating properties including massless Dirac electronic structure, extraordinary high electron mobility, thermal conductivity, stiffness and strength, and large surface volume ratio etc. This edited book is organised into two parts. The first part focuses on the electronic and mechanical properties of graphene materials. The second part of this book covers the application aspect of graphene and related materials. Graphene is a simple material, but also a building block for very complicated applications. The approach to understand the role of graphene and related materials in these fields relies not only on individual research by scientists in their own fields but also, on interdisciplinary cross-talk, as we present here in this book.
Graphene: Fabrication, Characterizations, Properties and Applications presents a comprehensive review of the current status of graphene, especially focused on synthesis, fundamental properties and future applications, aiming to giving a comprehensive reference for scientists, researchers and graduate students from various sectors. Graphene, a single atomic layer of carbon hexagons, has stimulated a lot of research interest owing to its unique structure and fascinating properties. The book is devoted to understanding graphene fundamentally yet comprehensively through a wide range of issues in the areas of materials science, chemistry, physics, electronics and biology. The book is an important resource of comprehensive knowledge pertinent to graphene and to related expanding areas. This valuable book will attract scientists, researchers and graduate students in physics and chemistry because it aims at providing all common knowledge of these communities including essential aspects of material synthesis and characterization, fundamental physical properties and detailed chapters focused on the most promising applications. Presents a comprehensive and up-to-date review of current research of graphene, especially focused on synthesis, fundamental properties and future applications Includes not only fundamental knowledge of graphene materials, but also an overview of special properties for different potential applications of graphene in the fields of solar cells, photodetectors, energy storage, composites, environmental materials and bio-materials Emphasizes graphene-based applications that are quickly emerging as potential building blocks for nanotechnological commercial applications
Nanotechnology is a diverse science that has brought about new applications in fields such as colloidal science, device physics and supra molecular chemistry. Environmental pollution treatment by nanomaterials is an emerging application of nanotechnology. It is gaining importance because of the increased environmental challenges due to the impact of modern industrial activities. Industrial activity involves the production and use of various toxic organic and inorganic chemicals which pollute nearby water streams, indirectly influencing aquatic and human life. Thus, there is a need to protect the environment through the development of new technologies and by enacting awareness drives for environmental sustainability. This volume summarizes cutting-edge research on nanomaterial utilization for environmental challenges. Chapters introduce readers to the concepts of environmental protection, sustainability and monitoring. Readers will also learn about technologies used for keeping the environment safer, including ion exchangers, metallic oxide complexes, nanocomposite materials, porous membranes and nanocatalysts. This volume is intended to be an introductory reference for students and researchers undertaking advanced courses in materials science, environmental science and engineering, giving readers a glimpse into the fascinating world of nanotechnology.
This book provides a comprehensive state-of-the-art overview of the optical properties of graphene. During the past decade, graphene, the most ideal and thinnest of all two-dimensional materials, has become one of the most widely studied materials. Its unique properties hold great promise to revolutionize many electronic, optical and opto-electronic devices. The book contains an introductory tutorial and 13 chapters written by experts in areas ranging from fundamental quantum mechanical properties to opto-electronic device applications of graphene.
Fullerens, Graphenes and Nanotubes: A Pharmaceutical Approach shows how carbon nanomaterials are used in the pharmaceutical industry. While there are various books on the carbonaceous nanomaterials available on the market, none approach the subject from a pharmaceutical point-of-view. In this context, the book covers different applications of carbonaceous nanomaterials. Chapters examine different types of carbon nanomaterials and explore how they are used in such areas as cancer treatments, pulse sensing and prosthetics. Readers will find this book to be a valuable reference resource for those working in the areas of carbon materials, nanomaterials and pharmaceutical science. - Explains how the unique properties of carbon-based nanomaterials allow them to be used to create effective drug delivery systems - Covers how carbon-based nanomaterials should be prepared for use in pharmaceutical applications - Discusses the relative toxicity of a range of carbon-based nanomaterials - Considers the safety of their use in different types of drugs
Nanotechnology is a diverse science that has brought about new applications in fields such as colloidal science, device physics and supra molecular chemistry. This volume gives an overview of the development of nanomaterial applications in energy and power generation, medicine and healthcare, water purification, biotechnology, electronics, sporting goods, environmental issues, military defense, and textile/fabric industries. The text also explains the fundamentals of polymer nanocomposites and their industrial applications. Other chapters cover semiconductor applications of nanomaterials, nanomaterial synthesis, characterization of nanocomposites and uses of nanofillers. Readers will also find notes on the DFT study of II-VI semiconducting nano-clusters. This volume is intended to be an introductory reference for students and researchers undertaking advanced courses in materials science and engineering, giving readers a glimpse into the fascinating world of nanotechnology.
Recent Advances in Analytical Techniques is a series of updates in techniques used in chemical analysis. Each volume presents information about a selection of analytical techniques. Readers will find information about developments in analytical methods such as chromatography, electrochemistry, optical sensor arrays for pharmaceutical and biomedical analysis. Novel Developments in Pharmaceutical and Biomedical Analysis is the second volume of the series and covers the following topics: o Chromatographic assays of solid dosage forms and their drug dissolution studies o UHPLC method for the estimation of bioactive compounds o HILIC based LC/MS for metabolite analysis o In vitro methods for the evaluation of oxidative stress o Application of vibrational spectroscopy in studies of structural polymorphism of drugs o Electrochemical sensors based on conductive polymers and carbon nanotubes o Optical sensor arrays for pharmaceutical and biomedical analyses o Chemical applications of ionic liquids o New trends in enantioanalysis of pharmaceutical compounds
2D Functional Nanomaterials Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications In 2D Functional Nanomaterials: Synthesis, Characterization, and Applications, Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in the rational design and synthesis of 2D nanomaterials and their applications in semiconducting catalysts, biosensors, electrolysis, batteries, and solar cells. This interdisciplinary volume is a valuable resource for materials scientists, electrical engineers, nanoscientists, and solid-state physicists looking for up-to-date information on 2D heterojunction nanomaterials. The text summarizes the scientific contributions of international experts in the fabrication and application of 2D nanomaterials while discussing the importance and impact of 2D nanomaterials on future economic growth, novel manufacturing processes, and innovative products. Provides thorough coverage of graphene chemical derivatives synthesis and applications, including state-of-the-art developments and perspectives Describes 2D/2D graphene oxide-layered double hydroxide nanocomposites for immobilization of different radionuclides Covers 2D nanomaterials for biomedical applications and novel 2D nanomaterials for next-generation photodetectors Discusses applications of 2D nanomaterials for cancer therapy and recent trends ingraphene-latex nanocomposites Perfect for materials scientists, inorganic chemists, and electronics engineers, 2D Functional Nanomaterials: Synthesis, Characterization, and Applications is also an essential resource for solid-state physicists seeking accurate information on recent progress in two-dimensional heterojunction materials with energy conversion applications.