Download Free Graph Edge Coloring Book in PDF and EPUB Free Download. You can read online Graph Edge Coloring and write the review.

Features recent advances and new applications in graph edgecoloring Reviewing recent advances in the Edge Coloring Problem, GraphEdge Coloring: Vizing's Theorem and Goldberg's Conjectureprovides an overview of the current state of the science,explaining the interconnections among the results obtained fromimportant graph theory studies. The authors introduce many newimproved proofs of known results to identify and point to possiblesolutions for open problems in edge coloring. The book begins with an introduction to graph theory and theconcept of edge coloring. Subsequent chapters explore importanttopics such as: Use of Tashkinov trees to obtain an asymptotic positive solutionto Goldberg's conjecture Application of Vizing fans to obtain both known and newresults Kierstead paths as an alternative to Vizing fans Classification problem of simple graphs Generalized edge coloring in which a color may appear more thanonce at a vertex This book also features first-time English translations of twogroundbreaking papers written by Vadim Vizing on an estimate of thechromatic class of a p-graph and the critical graphs within a givenchromatic class. Written by leading experts who have reinvigorated research inthe field, Graph Edge Coloring is an excellent book formathematics, optimization, and computer science courses at thegraduate level. The book also serves as a valuable reference forresearchers interested in discrete mathematics, graph theory,operations research, theoretical computer science, andcombinatorial optimization.
Graph coloring is one of the oldest and best-known problems of graph theory. Statistics show that graph coloring is one of the central issues in the collection of several hundred classical combinatorial problems. This book covers the problems in graph coloring, which can be viewed as one area of discrete optimization.
A comprehensive treatment of color-induced graph colorings is presented in this book, emphasizing vertex colorings induced by edge colorings. The coloring concepts described in this book depend not only on the property required of the initial edge coloring and the kind of objects serving as colors, but also on the property demanded of the vertex coloring produced. For each edge coloring introduced, background for the concept is provided, followed by a presentation of results and open questions dealing with this topic. While the edge colorings discussed can be either proper or unrestricted, the resulting vertex colorings are either proper colorings or rainbow colorings. This gives rise to a discussion of irregular colorings, strong colorings, modular colorings, edge-graceful colorings, twin edge colorings and binomial colorings. Since many of the concepts described in this book are relatively recent, the audience for this book is primarily mathematicians interested in learning some new areas of graph colorings as well as researchers and graduate students in the mathematics community, especially the graph theory community.
Contains a wealth of information previously scattered in research journals, conference proceedings and technical reports. Identifies more than 200 unsolved problems. Every problem is stated in a self-contained, extremely accessible format, followed by comments on its history, related results and literature. The book will stimulate research and help avoid efforts on solving already settled problems. Each chapter concludes with a comprehensive list of references which will lead readers to original sources, important contributions and other surveys.
With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition
The objective of our monograph is to cover the developments on the theoretical foundations of distributed symmetry breaking in the message-passing model. We hope that our monograph will stimulate further progress in this exciting area.
Graph Theory and Applications
This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.
This book treats graph colouring as an algorithmic problem, with a strong emphasis on practical applications. The author describes and analyses some of the best-known algorithms for colouring arbitrary graphs, focusing on whether these heuristics can provide optimal solutions in some cases; how they perform on graphs where the chromatic number is unknown; and whether they can produce better solutions than other algorithms for certain types of graphs, and why. The introductory chapters explain graph colouring, and bounds and constructive algorithms. The author then shows how advanced, modern techniques can be applied to classic real-world operational research problems such as seating plans, sports scheduling, and university timetabling. He includes many examples, suggestions for further reading, and historical notes, and the book is supplemented by a website with an online suite of downloadable code. The book will be of value to researchers, graduate students, and practitioners in the areas of operations research, theoretical computer science, optimization, and computational intelligence. The reader should have elementary knowledge of sets, matrices, and enumerative combinatorics.
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.