Download Free Gradients And Tissue Patterning Book in PDF and EPUB Free Download. You can read online Gradients And Tissue Patterning and write the review.

Gradients and Tissue Patterning, Volume 137 in the Current Topics in Developmental Biology series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics. Each chapter is written by an international board of authors.
Gradients and Tissue Patterning, Volume 137 in the Current Topics in Developmental Biology series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Current Topics in Developmental Biology series - Includes the latest information on gradients and tissue patterning
Signalling by morphogens such as the Hedgehog family, Notch, Wingless/Wnt and various growth factors is essential during embryogenesis. The establishment of concentration gradients of these morphogens plays a key role during developmental patterning in all multicellular organisms, assuring that distinct cell/tissue types and organs appear at the right place in the right time during embryogenesis. Regulation of morphogen synthesis, trafficking and diffusion are all known to play a part in setting up these gradients, and a complex web of signaling mechanisms ensures that specific responses occur at the correct threshold concentration in the recipient cells whose fate depends on these morphogens.
Branching morphogenesis, the creation of branched structures in the body, is a key feature of animal and plant development. This book brings together, for the first time, expert researchers working on a variety of branching systems to present a state-of-the-art view of the mechanisms that control branching morphogenesis. Systems considered range from single cells, to blood vessel and drainage duct systems to entire body plans, and approaches range from observation through experiment to detailed biophysical modelling. The result is an integrated overview of branching.
The zebrafish (Danio rerio) is a valuable and common model for researchers working in the fields of genetics, oncology and developmental sciences. This full-color atlas will aid experimental design and interpretation in these areas by providing a fundamental understanding of zebrafish anatomy. Over 150 photomicrographs are included and can be used for direct comparison with histological slides, allowing quick and accurate identification of the anatomic structures of interest. Hematoxylin and eosin stained longitudinal and transverse sections demonstrate gross anatomic relationships and illustrate the microscopic anatomy of major organs. Unlike much of the current literature, this book is focused exclusively on the zebrafish, eliminating the need for researchers to exclude structures that are only found in other fish.
Cell Polarity in Development and Disease offers insights into the basic molecular mechanisms of common diseases that arise as a result of a loss of ordered organization and intrinsic polarity. Included are diseases affecting highly polarized epithelial tissues in the lung and kidney, as well as loss and gain of cell polarity in the onset and progression of cancer. This book provides a basic resource for understanding the biology of polarity, offering a starting point for those thinking of targeting cell polarity for translational medical research. - Provides basic science understanding of cell polarity disease and development - Covers diseases affecting polarized epithelial tissues in the lung and kidney, also covering the progression of cancer - Includes historical context of cell polarity research for potential future breakthroughs
The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 1 offers 48 high level articles devoted mainly to patterning and cell type specification in the developing central and peripheral nervous systems. - Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop - Features leading experts in various subfields as Section Editors and article Authors - All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship - Volume 1 sections include coverage of mechanisms which: control regional specification, regulate proliferation of neuronal progenitors and control differentiation and survival of specific neuronal subtypes, and controlling development of non-neural cells
Escherichia coli, commonly referred to as E. coli, has been the organism of choice for molecular genetics for decades. Its machinery and mobile behavior is one of the most fascinating topics for cell scientists. Scientists and engineers, not trained in microbiology, and who would like to learn more about living machines, can see it as a unique example. This cross-disciplinary monograph covers more than thirty years of research and is accessible to graduate students and scientists alike.