Download Free Gper Control And Functions Book in PDF and EPUB Free Download. You can read online Gper Control And Functions and write the review.

The book provides a reference for years to come, written by world-renowned expert investigators studying sex differences, the role of sex hormones, the systems biology of sex, and the genetic contribution of sex chromosomes to metabolic homeostasis and diseases. In this volume, leaders of the pharmaceutical industry present their views on sex-specific drug discovery. Many of the authors presented at the Keystone Symposium on “Sex and gender factors affecting metabolic homeostasis, diabetes and obesity” to be held in March 2017 in Lake Tahoe, CA. This book will generate new knowledge and ideas on the importance of gender biology and medicine from a molecular standpoint to the population level and to provide the methods to study them. It is intended to be a catalyst leading to gender-specific treatments of metabolic diseases. There are fundamental aspects of metabolic homeostasis that are regulated differently in males and females, and influence both the development of diabetes and obesity and the response to pharmacological intervention. Still, most preclinical researchers avoid studying female rodents due to the added complexity of research plans. The consequence is a generation of data that risks being relevant to only half of the population. This is a timely moment to publish a book on sex differences in diseases as NIH leadership has asked scientists to consider sex as a biological variable in preclinical research, to ensure that women get the same benefit of medical research as men.
Spermatogenesis is a process highly conserved throughout vertebrate species and is mainly under hypothalamic-pituitary control. It occurs in the testis in a stepwise fashion so that committed spermatogonia develop into spermatocytes and enter meiosis to produce round spermatids. These undergo a morphological transformation (spermiogenesis) into mature spermatids (i.e.: spermatozoa), which are differentially released from Sertoli cells (spermiation) depending on the species. In mammals, further transformations are necessary to form mature spermatozoa, suitable for fertilization. Gonadotropins, mainly responsive to gonadotropin-releasing hormone, control spermatogenesis through specific receptors located at the gonadal level. However, besides the endocrine route, the chemical mediators may also act locally in the gonad. Indeed, it is documented that testis physiology, including steroidogenesis and spermatogenesis, does not fully account for traditional endocrine control but an intragonadal network of autocrine and/or paracrine regulators also exists, whose activity, via cell-to-cell communication, regulates germ cell progression and development of qualitatively mature spermatozoa. Of note, a number of testicular modulators, such as gonadotropin releasing hormone, Kiss-peptin, endocannabinoids, has been early isolated in the brain and latest in the gonads. To fully understand precise mechanisms underlying the functional interaction of this intricate network, needless to say, it is crucially required to have detailed information about modulators and target cells. Through synergy between the respective specializations of all the authors, this topic reviewed emerging knowledge about neuroendocrine and local mediators controlling germ cell progression and maturation.
Cancer is a multifaceted disease and overwhelmingly increasing experimental evidence has helped us to develop a deeper understanding of the role of signal transduction cascades in cancer development and progression. Tissue microarrays and next generation sequencing technologies have assisted us to gather missing pieces of jigsaw puzzle and we now know that deregulation of spatio-temporally controlled signaling cascades play fundamental role in metastasis and resistance against wide ranging therapeutics. This book offers a balanced overview of the rapidly emerging cutting edge research in molecular oncology and good source of knowledge for established oncologists, basic and medical students and pharmaceutical industry associated R&D departments.
This book provides a comprehensive summary of the cutting edge scientific evidence regarding the role of immune system in the pathogenesis and treatment of schizophrenia and related psychotic disorders. It illustrates the role of inflammation and immunity in schizophrenia drawing on both basic science and clinical research. The chapters provide up-to-date summaries of immunological risk factors for schizophrenia and related psychotic disorders, and underlying mechanisms as informed by neuroimaging, genetic, clinical and animal experimental studies. In addition, the book will illuminate the scope for immunological treatment for schizophrenia.
A concise and innovative account of clinical neuroendocrine disorders and the key principles underlying their diagnosis and management.
This book is designed as an introductory text in neuroendocrinology; the study of the interaction between the brain and endocrine system and the influence of this on behaviour. The endocrine glands, pituitary gland and hypothalamus and their interactions and hormones are discussed. The action of steroid and thyroid hormone receptors and the regulation of target cell response to hormones is examined. The function of neuropeptides is discussed with respect to the neuroendocrine system and behaviour. The neuroimmune system and lymphokines are described and the interaction between the neuroendocrine and neuroimmune systems discussed. Finally, methods for studying hormonal influences on behaviour are outlined. Each chapter has review and essay questions designed for advanced students and honours or graduate students with a background in neuroscience, respectively.
Epigenetics is one of the fastest growing fields of sciences, illuminating studies of human diseases by looking beyond genetic make-up and acknowledging that outside factors play a role in gene expression. The goal of this volume is to highlight those diseases or conditions for which we have advanced knowledge of epigenetic factors such as cancer, autoimmune disorders and aging as well as those that are yielding exciting breakthroughs in epigenetics such as diabetes, neurobiological disorders and cardiovascular disease. Where applicable, attempts are made to not only detail the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, but also novel epigenetic approaches to the treatment of these diseases. Chapters are also presented on human imprinting disorders, respiratory diseases, infectious diseases and gynecological and reproductive diseases. Since epigenetics plays a major role in the aging process, advances in the epigenetics of aging are highly relevant to many age-related human diseases. Therefore, this volume closes with chapters on aging epigenetics and breakthroughs that have been made to delay the aging process through epigenetic approaches. With its translational focus, this book will serve as valuable reference for both basic scientists and clinicians alike. Comprehensive coverage of fundamental and emergent science and clinical usage Side-by-side coverage of the basis of epigenetic diseases and their treatments Evaluation of recent epigenetic clinical breakthroughs
Sex Differences in Physiology is an all-encompassing reference that details basic science research into sex differences in all physiological fields. It includes scientific discoveries concerning sex differences in cardiovascular, respiratory, renal, gastrointestinal, and musculoskeletal physiology. In addition, coverage of the development, endocrinology, neurophysiology, immunity, and metabolism is included, making this important reference a resource that will meet the needs of investigators interested in incorporating sex differences into their research programs, while also providing clinicians with the basis for providing the best sex-based medical treatment options available. Provides a sweeping, organ-by-organ review of currently observed sex differences in animal models and human disease Explains how sex differences influence physiology and disease Provides the critical knowledge on sex differences for better understanding of prevention and treatment of diseases
Recent advances in molecular and cell biology enabling the cloning, expression, and mutagenesis of signal transduction proteins has prompted an explosion of knowledge in the field of receptor regulation, facilitating the discovery of new classes of regulatory proteins, and providing a basis and means for manipulating receptor function through multiple intracellular targets. This volume covers methods used to examine how the function(s) of receptors are regulated. Understanding how to regulate the function and expression of these receptors is critical in determining how to modify receptors and to translocating receptors away from the cell surface and its recycling. Individual chapters focus on specific techniques used to characterize receptors (epitope tagging, measurement and analysis of receptor phosphorylation, analysis of the kinetics of receptor desensitization, and assessment of receptor/G protein coupling); the role of regulatory proteins (receptor kinases and phosphatases, arrestins) in modulating receptor function; and the methods used to measure receptor trafficking (ligand binding, immunofluoresence) and expression (transcriptional and translational regulation). * Covers a broad range of important concepts and methodologies which are current in the study of G protein-coupled receptors (GPCRs) * G-protein coupled receptors make up over 40% of the current pharmacological targets * Provides detailed protocols for executing various strategies and offers informed judgments as to what approaches are and aren't useful * Volume Editor, Jeffrey Benovic, is a dominant world leader in the study of receptor regulation of GPCR kinases and is highly respected in the field