Download Free Global Wave Statistics Book in PDF and EPUB Free Download. You can read online Global Wave Statistics and write the review.

The global economy has experienced four waves of rapid debt accumulation over the past 50 years. The first three debt waves ended with financial crises in many emerging market and developing economies. During the current wave, which started in 2010, the increase in debt in these economies has already been larger, faster, and broader-based than in the previous three waves. Current low interest rates mitigate some of the risks associated with high debt. However, emerging market and developing economies are also confronted by weak growth prospects, mounting vulnerabilities, and elevated global risks. A menu of policy options is available to reduce the likelihood that the current debt wave will end in crisis and, if crises do take place, will alleviate their impact.
This book is intended as a handbook for professionals and researchers in the areas of Physical Oceanography, Ocean and Coastal Engineering and as a text for graduate students in these fields. It presents a comprehensive study on surface ocean waves induced by wind, including basic mathematical principles, physical description of the observed phenomena, practical forecasting techniques of various wave parameters and applications in ocean and coastal engineering, all from the probabilistic and spectral points of view. The book commences with a description of mechanisms of surface wave generation by wind and its modern modeling techniques. The stochastic and probabilistic terminology is introduced and the basic statistical and spectral properties of ocean waves are developed and discussed in detail. The bulk of material deals with the prediction techniques for waves in deep and coastal waters for simple and complex ocean basins and complex bathymetry. The various prediction methods, currently used in oceanography and ocean engineering, are described and the examples of practical calculations illustrate the basic text. An appendix provides a description of the modern methods of wave measurement, including the remote sensing techniques. Also the wave simulation methods and random data analysis techniques are discussed. In the book a lot of discoveries of the Russian and East European scientists, largely unknown in the Western literature due to the language barrier, are referred to.
Early in 1979, a group of wave researchers proposed a wave model inter comparison study to clarify the interrelations existing among the various wave models which have been developed in past years for real-time wave forecasting, wave statistics compilations, or hindcast case studies. The idea was immediately welcomed by the wave modeling community, and, finally, nine wave modeling groups from the United States, Japan, and Europe participated in the exercise. The principal results of this work are presented here jointly by the Sea Wave Modeling Project (swAMP) Group (the members of which are listed in Appendix A). Descriptions of the models used in the study are given in Part II of this volume. A more complete documentation of the entire set of numerical experiments is given in Part 2 of the Sea Wave Modeling Project (SWAMP group, 1982). The main purpose of the intercomparison study was to test our present understanding of the physics of . wind-generated surface waves from the viewpoint of wave modeling. Specifically, we wished to clarify the basic interdependence between understanding the physics of surface waves, repre senting the physics numerically, and predicting quantitatively the detailed space-time evolution of a two-dimensional surface wave spectrum for a given wind field. It was not our intent to carry out a model competition. In this sense there were no winners or losers: all models could claim specific strong points, and all displayed weaknesses in some areas.
Waves critically affect man in coastal regions, including the open coasts and adjacent continental shelves. Preventing beach erosion, designing and building structures, designing and operating ships, providing marine forecasts, and coastal planning are but a few examples of projects for which extensive information about wave conditions is critical. Scientific studies, especially those in volving coastal processes and the development of better wave prediction models, also require wave condition information. How ever, wave conditions along and off the coasts of the United States have not been adequately determined. The main categories of available wave data are visual estimates of wave conditions made from ships at sea, scientific measurements of waves made for short time periods at specific locations, and a small number of long-term measurements made from piers or offshore platforms. With these considerations in mind, the National Ocean Survey of the National Oceanic and Atmospheric Administration sponsored the Ocean Wave Climate Symposium at Herndon, Virginia, July 12-14, 1977. This volume contains papers presented at this symposium. A goal of the symposium was to establish the foundations for a com prehensive and far-sighted wave measurement and analysis program to fully describe the coastal wave climate of the United States. Emphasis was placed on ocean engineering and scientific uses of wave data, existing wave monitoring programs, and modern measure ment techniques which may provide currently needed data.
The goals of wind wave research are relatively well defined: to be able to predict the wind wave field and its effect on the environment. That environment could be natural (beaches, the atmosphere etc.) or imposed by human endeavour (ports, harbours, coastal settlements etc.). Although the goals are similar, the specific requirements of these various fields differ considerably.This book attempts to summarise the current state of this knowledge and to place this understanding into a common frame work. It attempts to take a balanced approach between the pragmatic engineering view of requiring a short term result and the scientific quest for detailed understanding. Thus, it attempts to provide a rigorous description of the physical processes involved as well as practical predictive tools.
This book addresses both fundamental and applied aspects of ocean waves including the use of wave observations made from satellites. More specifically it describes the WAM model, its scientific basis, its actual implementation, and its many applications. The three sections of the volume describe the basic statistical theory and the relevant physical processes; the numerical model and its global and regional applications; and satellite observations, their interpretation and use in data assimilation.
Waves in Oceanic and Coastal Waters describes the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions with islands, channels, tidal flats and inlets, estuaries, fjords and lagoons. Most of this richly illustrated book is devoted to the physical aspects of waves. After introducing observation techniques for waves, both at sea and from space, the book defines the parameters that characterise waves. Using basic statistical and physical concepts, the author discusses the prediction of waves in oceanic and coastal waters, first in terms of generalised observations, and then in terms of the more theoretical framework of the spectral energy balance. He gives the results of established theories and also the direction in which research is developing. The book ends with a description of SWAN (Simulating Waves Nearshore), the preferred computer model of the engineering community for predicting waves in coastal waters.